Curvatures and Riemannian geometry in differentiable manifolds

 
see the original item page
in the repository's web site and access all digital files if the item*
share



PhD thesis (EN)

2004 (EN)
Καμπυλότητες και γεωμετρία του Riemann σε διαφορίσιμες πολλαπλότητες
Curvatures and Riemannian geometry in differentiable manifolds

Καρατσομπάνης, Ιωάννης Ν.

We give some new results on three-dimensional contact metric manifolds. Selected applications on Physics are provided
Στην διατριβή αυτή παρουσίάζονται νέα αποτελέσματα στις τρισδιάστατες πολλαπλότητες επαφής. Δίνονται εφαρμογές στη φυσική

PhD Thesis / Διδακτορική Διατριβή
info:eu-repo/semantics/doctoralThesis

Contact manifolds
Γεωμετρία, Διαφορική
Hamilton mechanics
Γεωμετρία Riemann
Hydrodynamics
Conformally flat
Geometry, Riemannian
Υδροδυναμική
Q-ομογενής
Σολιτόνια Ricci
Geometry, Differential
Πολλαπλότητες επαφής
Σύμμορφα επίπεδη
Ricci solitons
Μηχανική Χάμιλτον
Q-homogeneous

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (EL)
Aristotle University of Thessaloniki (EN)

Greek
English

2004
2009-06-21T21:00:00Z


Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Πολυτεχνική Σχολή, Γενικό Τμήμα Πολυτεχνικής Σχολής

This record is part of 'IKEE', the Institutional Repository of Aristotle University of Thessaloniki's Library and Information Centre found at http://ikee.lib.auth.gr. Unless otherwise stated above, the record metadata were created by and belong to Aristotle University of Thessaloniki Library, Greece and are made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). Unless otherwise stated in the record, the content and copyright of files and fulltext documents belong to their respective authors. Out-of-copyright content that was digitized, converted, processed, modified, etc by AUTh Library, is made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). You are kindly requested to make a reference to AUTh Library and the URL of the record containing the resource whenever you make use of this material.
info:eu-repo/semantics/openAccess



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)