Use of Iron- and Manganese-Oxidizing Bacteria for the Combined Removal of Iron, Manganese and Arsenic from Contaminated Groundwater

 
see the original item page
in the repository's web site and access all digital files if the item*
share




2006 (EN)
Use of Iron- and Manganese-Oxidizing Bacteria for the Combined Removal of Iron, Manganese and Arsenic from Contaminated Groundwater

Zoumpoulis, Anastasios
Katsoyiannis, I.A.

The problem of groundwater contamination with arsenic has been under extensive discussion, especially in recent years, because of its adverse effects on human health and its widespread presence in groundwater throughout the world. Large drinking water plants in developed countries normally find alternative and arsenic-free water resources, or they apply conventional arsenic removal methods, such as coagulation/filtration, activated alumina and ion exchange. Smaller towns, communities and individual users in rural areas often rely on local water resources and the respective removal methods developed mainly for larger water treatment plants are not easily applicable, because of high operational and capital costs, or they are simply too complicated and their use is sometimes limited by the specific water composition. Consequently, small drinking water systems face the difficult challenge in providing a safe and sufficient supply of drinking water at a reasonable cost. Alternative treatment methods have been developed for application in these cases. In the present paper, the simultaneous removal of arsenic during biological iron and manganese oxidation is reviewed. The method relies on the use of indigenous non-pathogenic iron- and manganese-oxidizing bacteria. Dissolved iron and manganese species often coexist with arsenic in groundwater. Therefore, the application of this method could provide consumers with water of high quality, which is practically free of iron, manganese and arsenic, complying with the respective legislative limits. In this paper the biological oxidation of iron and manganese has been reviewed and recent findings regarding the removal of arsenic have been summarized. Arsenic(III or V) can be removed efficiently from a wide range of initial concentrations with practically limited operational cost, apart from the capital costs for the installation of treatment units. As a result, the use of chemical reagents for the oxidation of trivalent arsenic can be avoided, because As(III) was efficiently oxidized to As(V) by these bacteria (acting as catalysts) under similar conditions, which are usually applied for the removal of iron and manganese by biological means

Article / Άρθρο
info:eu-repo/semantics/article

Arsenic
Combined removal bacterial oxidation groundwater
Iron
Manganese

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (EL)
Aristotle University of Thessaloniki (EN)

English

2006
2009-07-10T07:22:56Z


Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Θετικών Επιστημών, Τμήμα Χημείας

Water Quality Research Journal of Canada, vol.41 no.2 [2006] p.117-129 [Published Version]
urn:ISSN:12013080

This record is part of 'IKEE', the Institutional Repository of Aristotle University of Thessaloniki's Library and Information Centre found at http://ikee.lib.auth.gr. Unless otherwise stated above, the record metadata were created by and belong to Aristotle University of Thessaloniki Library, Greece and are made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). Unless otherwise stated in the record, the content and copyright of files and fulltext documents belong to their respective authors. Out-of-copyright content that was digitized, converted, processed, modified, etc by AUTh Library, is made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). You are kindly requested to make a reference to AUTh Library and the URL of the record containing the resource whenever you make use of this material.
info:eu-repo/semantics/openAccess



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)