A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks

Dimitriadis, Stayros
Micheloyannis, Sifis
Tsirka, Vasso
Laskaris, Nikolaos
Vourkas, Michael
Fotopoulos, Spiros
Erimaki, Sofia

Symbolic dynamics is a powerful tool for studying complex dynamical systems. So far many techniques of this kind have been proposed as a means to analyze brain dynamics, but most of them are restricted to single-sensor measurements. Analyzing the dynamics in a channel-wise fashion is an invalid approach for multisite encephalographic recordings, since it ignores any pattern of coordinated activity that might emerge from the coherent activation of distinct brain areas. We suggest, here, the use of neural-gas algorithm (Martinez et al. in IEEE Trans Neural Netw 4:558–569, 1993) for encoding brain activity spatiotemporal dynamics in the form of a symbolic timeseries. A codebook of k prototypes, best representing the instantaneous multichannel data, is first designed. Each pattern of activity is then assigned to the most similar code vector. The symbolic timeseries derived in this way is mapped to a network, the topology of which encapsulates the most important phase transitions of the underlying dynamical system. Finally, global efficiency is used to characterize the obtained topology. We demonstrate the approach by applying it to EEG-data recorded from subjects while performing mental calculations. By working in a contrastive-fashion, and focusing in the phase aspects of the signals, we show that the underlying dynamics differ significantly in their symbolic representations.

Article / Άρθρο
info:eu-repo/semantics/article

Transitions Math tasks
Symbolic dynamics Multichannel EEG

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (EL)
Aristotle University of Thessaloniki (EN)

Αγγλική γλώσσα

2012
2012-01-10T12:18:44Z


Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Θετικών Επιστημών, Τμήμα Πληροφορικής

Cognitive Neurodynamics, vol.6 no.1 [2012] p.107-113 [Published Version]
urn:ISSN:18714080

This record is part of 'IKEE', the Institutional Repository of Aristotle University of Thessaloniki's Library and Information Centre found at http://ikee.lib.auth.gr. Unless otherwise stated above, the record metadata were created by and belong to Aristotle University of Thessaloniki Library, Greece and are made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). Unless otherwise stated in the record, the content and copyright of files and fulltext documents belong to their respective authors. Out-of-copyright content that was digitized, converted, processed, modified, etc by AUTh Library, is made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). You are kindly requested to make a reference to AUTh Library and the URL of the record containing the resource whenever you make use of this material.
info:eu-repo/semantics/openAccess



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.