Time Prediction Models of Grapple Skidder HSM 904 Using Multiple Linear Regressions (MLR) and Adaptive Neuro-Fuzzy Inference System (ANFIS)

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Time Prediction Models of Grapple Skidder HSM 904 Using Multiple Linear Regressions (MLR) and Adaptive Neuro-Fuzzy Inference System (ANFIS)

Ghajar, I.
Tsioras, Petros
Naghdi, Ramin

The majority of productivity studies in forest operations use the ordinary least square regression in order to calculate time prediction models. Objective of this paper was to compare two methods, the adaptive neuro fuzzy inference system (ANFIS) and the multiple linear regression (MLR) pertaining to the modeling the loading time with the grapple skidder HSM 904. In order to investigate the influence of changes in membership functions (MF), inference system (IS) and optimization methods on the performance of the ANFIS model, four types of MF, two types of IS and two types of optimization methods were applied. Two stepwise (forward and backward) techniques were applied in the development of the MLR models. The data originated from a time study of 35 truckloads including 238 loading cycles with the specific forest machine. The comparison of the various modeling approaches indicated that the generated ANFIS with constant IS, Backpropagation training algorithm, and Gaussian membership function had a greater predictive power (R2 = 0.84) and higher performance than all calculated MLR models (R2 = 0.61). The results also showed that ANFIS could predict with a relatively high accuracy (R2 = 0.74) the loading time by adopting the “number of loaded logs” as the single input variable.

Article / Άρθρο
info:eu-repo/semantics/article

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (EL)
Aristotle University of Thessaloniki (EN)

Αγγλική γλώσσα

2016
2016-11-11T19:41:31Z


Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Γεωπονίας, Δασολογίας και Φυσικού Περιβάλλοντος, Τμήμα Δασολογίας και Φυσικού Περιβάλλοντος

Operational Research, vol.16 no.3 [2016] p.501-512

This record is part of 'IKEE', the Institutional Repository of Aristotle University of Thessaloniki's Library and Information Centre found at http://ikee.lib.auth.gr. Unless otherwise stated above, the record metadata were created by and belong to Aristotle University of Thessaloniki Library, Greece and are made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). Unless otherwise stated in the record, the content and copyright of files and fulltext documents belong to their respective authors. Out-of-copyright content that was digitized, converted, processed, modified, etc by AUTh Library, is made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license (http://creativecommons.org/licenses/by-sa/4.0). You are kindly requested to make a reference to AUTh Library and the URL of the record containing the resource whenever you make use of this material.
info:eu-repo/semantics/openAccess



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.