Adaptive discontinuous Galerkin finite elements method for the non linear Schrodinger equation

 
Το τεκμήριο παρέχεται από τον φορέα :
Πανεπιστήμιο Κρήτης
Αποθετήριο :
E-Locus Ιδρυματικό Καταθετήριο
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο




2015 (EL)
Η ασυνεχή μέθοδο Galerkin για την μη γραμμική εξίσωση του schrodinger στην κρίσιμη διάσταση
Adaptive discontinuous Galerkin finite elements method for the non linear Schrodinger equation

Γουρζουλίδης, Δημήτριος

Πλεξουσάκης, Μιχαήλ

We consider an initial-value problem for the nonlinear Schrodinger with cubic nonlinear-ity in the critical dimension (d = 2). To approximate smooth solutions of this problem we construct and analyse a numerical method where the spatial discretization is based on discontinuous Galerkin finite elements and the temporal discretization is achieved by the implicit Crack-Nickolson scheme. We then equip this scheme with an adaptive spatial and temporal mesh refinement mechanism that enables the numerical technique to ap¬proximate well singular solutions of the NLS equation up to times close to blow-up. The numerical method presented here aims to approximate both radially and non-radially solutions of the NLS. (EN)

text
Τύπος Εργασίας--Μεταπτυχιακές εργασίες ειδίκευσης

Πεπερασμένα στοιχεία

Πανεπιστήμιο Κρήτης (EL)
University of Crete (EN)

Αγγλική γλώσσα

2015-11-20


Σχολή/Τμήμα--Σχολή Θετικών και Τεχνολογικών Επιστημών--Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών--Μεταπτυχιακές εργασίες ειδίκευσης



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.