Adaptive discontinuous Galerkin finite elements method for the non linear Schrodinger equation

 
This item is provided by the institution :
University of Crete
Repository :
E-Locus Institutional Repository
see the original item page
in the repository's web site and access all digital files if the item*
share




2015 (EN)
Η ασυνεχή μέθοδο Galerkin για την μη γραμμική εξίσωση του schrodinger στην κρίσιμη διάσταση
Adaptive discontinuous Galerkin finite elements method for the non linear Schrodinger equation

Γουρζουλίδης, Δημήτριος

Πλεξουσάκης, Μιχαήλ

We consider an initial-value problem for the nonlinear Schrodinger with cubic nonlinear-ity in the critical dimension (d = 2). To approximate smooth solutions of this problem we construct and analyse a numerical method where the spatial discretization is based on discontinuous Galerkin finite elements and the temporal discretization is achieved by the implicit Crack-Nickolson scheme. We then equip this scheme with an adaptive spatial and temporal mesh refinement mechanism that enables the numerical technique to ap¬proximate well singular solutions of the NLS equation up to times close to blow-up. The numerical method presented here aims to approximate both radially and non-radially solutions of the NLS. (EN)

text
Τύπος Εργασίας--Μεταπτυχιακές εργασίες ειδίκευσης

Πεπερασμένα στοιχεία

Πανεπιστήμιο Κρήτης (EL)
University of Crete (EN)

English

2015-11-20


Σχολή/Τμήμα--Σχολή Θετικών και Τεχνολογικών Επιστημών--Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών--Μεταπτυχιακές εργασίες ειδίκευσης



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)