Computer-based malignancy grading of astrocytomas employing a support vector machines classifier, the WHO grading system, and the regular staining diagnostic procedure Hematoxylin-Eosin

 
Το τεκμήριο παρέχεται από τον φορέα :
ΤΕΙ Αθήνας
Αποθετήριο :
Υπατία - Ιδρυματικό Αποθετήριο
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Computer-based malignancy grading of astrocytomas employing a support vector machines classifier, the WHO grading system, and the regular staining diagnostic procedure Hematoxylin-Eosin (EN)

Σπυρίδωνος, Παναγιώτα Π. (EL)
Πεταλάς, Π. (EL)
Γκλώτσος, Δημήτριος (EL)
Κάβουρας, Διονύσης Α. (EL)
Ραβαζούλα, Παναγιώτα (EL)

Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. (EL)
Λέκκα, Ι. (EL)
Αραπαντώνη-Δαδιώτη, Πετρούλα (EL)
Νικηφορίδης, Γεώργιος Χ. (EL)

OBJECTIVE: To investigate and develop an automated technique for astrocytoma malignancy grading compatible with the clinical routine. STUDY DESIGN: One hundred forty biopsies of astrocytomas were collected from 2 hospitals. The degree of tumor malignancy was defined as low or high according to the World Health Organization grading system. From each biopsy, images were digitized and segmented to isolate nuclei from background tissue. Morphologic and textural nuclear features were quantified to encode tumor malignancy. Each case was represented by a 40-dimensional feature vector. An exhaustive search procedure in feature space was utilized to determine the best feature combination that resulted in the smallest classification error. Low and high grade tumors were discriminated using support vector machines (SVMs). To evaluate the system performance, all available data were split randomly into training and test sets. RESULTS: The best vector combination consisted of 3 textural and 2 morphologic features. Low and high grade cases were discriminated with an accuracy of 90.7% and 88.9%, respectively, using an SVM classifier with polynomial kernel of degree 2. CONCLUSION: The proposed methodology was based on standards that are common in daily clinical practice and might be used in parallel with conventional grading as a second-opinion tool to reduce subjectivity in the classification of astrocytomas. (EN)

journalArticle

Ταξινόμηση (EN)
Biopsy (EN)
Classification (EN)
Βιοψία (EN)

ΤΕΙ Αθήνας (EL)
Technological Educational Institute of Athens (EN)

Analytical and Quantitative Cytology and Histology (EN)

Αγγλική γλώσσα

2004


Journal of Reproductive Medicine (EN)



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.