A neural network approach for the prediction of the refractive index based on experimental data

Το τεκμήριο παρέχεται από τον φορέα :
ΤΕΙ Αθήνας
Αποθετήριο :
Υπατία - Ιδρυματικό Αποθετήριο
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο

A neural network approach for the prediction of the refractive index based on experimental data (EN)

Μουτζούρης, Κωνσταντίνος Ι. (EL)
Αλεξανδρίδης, Αλέξανδρος Π. (EL)
Τριάντης, Δήμος Α. (EL)
Χονδροδήμα, Ευαγγελία (EL)

N/A (EN)

This article presents a systematic approach for correlating the refractive index of different material kinds and forms with experimentally measured inputs like wavelength, temperature, and concentration. The correlation is accomplished using neural network models, which can deal effectively with the nonlinear nature of the problem without requiring a predefined form of equation, while taking into account all the parameters affecting the refractive index. The proposed methodology employs the powerful radial basis function network architecture and the neural network training procedure is accomplished using an innovative algorithm, which provides results with increased prediction accuracy. The methodology is applied to two cases, involving the estimation of the refractive index of semiconductor material crystals and an ethanol-water mixture and the results show that the refractive index predictions are accurate approximately to the same number of decimal places as the real measurements. Comparisons with other neural network training methods, but also with empirical forms like the Sellmeier equation, highlight the superiority of the proposed approach. (EN)


Prediction accuracy (EN)
Ακρίβεια πρόβλεψης (EN)
Experimental data (EN)
Innovative algorithms (EN)
Μοντέλο νευρωνικού δικτύου (EN)
Real measurements (EN)
Neural network training (EN)
Μίγματα αιθανόλης νερού (EN)
Πειραματικά δεδομένα (EN)
Sellmeier equation (EN)
Εκπαίδευση νευρωνικού δικτύου (EN)
Ethanol water mixtures (EN)
Nonlinear nature (EN)
Πραγματικές μετρήσεις (EN)
Καινοτόμοι αλγόριθμοι (EN)
Εξίσωση Sellmeier (EN)
Neural network model (EN)

ΤΕΙ Αθήνας (EL)
Technological Educational Institute of Athens (EN)

Journal of Materials Science (EN)

Αγγλική γλώσσα


DOI: 10.1007/s10853-011-5868-y

Springer Verlag (EN)

*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.