Ολοκληρώσιμες μιγαδικές συναρτήσεις

 
Το τεκμήριο παρέχεται από τον φορέα :

Αποθετήριο :
Αποθετήριο «Κάλλιπος»
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Ολοκληρώσιμες μιγαδικές συναρτήσεις (EL)

Τσίτσας, Νικόλαος (EL)
Tsitsas, Nikolaos (EN)

Φραντζεσκάκης, Δημήτριος (EL)
Κάλλιπος (EL)
Frantzeskakis, Dimitrios (EN)
Kallipos (EN)

Στο κεφάλαιο αυτό ορίζεται αρχικά η έννοια του μιγαδικού επικαμπυλίου ολοκληρώματος και καταγράφονται οι βασικές ιδιότητές του. Επίσης, καταγράφονται και τρόποι υπολογισμού βασικών μιγαδικών ολοκληρωμάτων. Εξετάζονται οι ιδιότητες των συναρτήσεων και των πεδίων ορισμού τους οι οποίες εξασφαλίζουν την ανεξαρτησία του ολοκληρώματος από την καμπύλη ολοκλήρωσης. Στην κατηγορία αυτή εντάσσονται οι συνεχείς συναρτήσεις, ορισμένες σε πεδίο, των οποίων υπάρχει αρχική, καθώς επίσης και οι ολόμορφες συναρτήσεις ορισμένες σε απλά συνεκτικό πεδίο. Για ολόμορφες συναρτήσεις ορισμένες σε απλά συνεκτικό πεδίο διατυπώνεται το κλασικό θεώρημα Cauchy-Goursat και εξετάζονται ορισμένες σημαντικές συνέπειες του (ολοκληρωτικοί τύποι Cauchy) οι οποίες επίσης χρησιμοποιούνται και για τον υπολογισμό μιγαδικών ολοκληρωμάτων. (EL)

learningMaterial
bookChapter

ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ (EL)
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΦΟΘΡΙΕΡ (EL)
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΛΑΠΛΑΣ (EL)
ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (EL)
Complex Functions (EN)
Differential Equations (EN)
Laplace Transform (EN)
Fourier Transform (EN)

Σύνδεσμος Ελληνικών Ακαδημαϊκων Βιβλιοθηκών (EL)
Hellenic Academic Libraries Link (EN)


Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών (EL)
Hellenic Academic Libraries Link (EN)

2015



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.