δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



From the rectangular hole to the ideal crack (EN)

Theocaris, PS (EN)
Petrou, L (EN)

N/A (EN)

The problem of a rectangular hole in an infinite elastic and isotropic plate, submitted to tension at infinity, is solved for any side ratio of the hole. It is assumed that the rectangular hole has rounded-off corners, the radii of curvature of which remain many times smaller than the short sides of the rectangles. The Muskhelishvili complex stress function θ{symbol}(z), sufficient to determine the first stress invariant needed for the solution is determined in a closed form by applying the conformal mapping method of the outside of a rectangle to the inside of a unit circle. The stress and strain distributions along the boundary of the hole, as well as inside a limited region in front of the short sides of the rectangle are accurately determined. It is proved that the method of reflected caustics is sensitive in examining the singular fields developed at the corners of the rectangles. Moreover, the minimum radii of the initial curves of the caustics are determined, outside of which the stress fields could be described by the singular solution. Experiments with reflected caustics in plexiglas plates corroborated the theoretical results. © 1989. (EN)

journalArticle

Mathematical Techniques--Conformal Mapping (EN)
Plexiglas Plates (EN)
Reflected Caustic Experiments (EN)
Elasticity (EN)
Rectangular Hole (EN)
Plastics--Crack Propagation (EN)
Stress Intensity Factors (EN)
Plates (EN)
Strain (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

International Journal of Solids and Structures (EN)

1989


PERGAMON-ELSEVIER SCIENCE LTD (EN)



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.