Analysis, stability and optimization of Aloha-type protocols for multichannel networks

 
see the original item page
in the repository's web site and access all digital files if the item*
share




1992 (EN)

Analysis, stability and optimization of Aloha-type protocols for multichannel networks (EN)

Pountourakis, I (EN)
Sykas, E (EN)

In this paper we propose a protocol appropriate for multiple access in a multichannel environment. All free stations contend in one channel, while the busy stations construct one queue belonging to all retransmission channels for collision resolution. Thus asymmetric access methods, such as pre-selection or sequential selection of retransission channels. A queueing model appropriate for the analysis and performance evaluation of the proposed protocol is derived. Analytic solutions are developed for a system with a finite number of stations using discrete time Markov chains. Numerical results indicate the dependence of normalized performance (normalized throughput and normalized delay) on the number of channels. The cases in which the multichannel system is superior to the single channel protocol are found. The stability of the multichannel system with infinite population is studied. Pakes's Lemma criteria are applied to specify regions in which the multichannel system is stable. The control parameters are the retransmission probabilities. Optimization rules are derived which show that the optimal retransmission probabilities are a function of the number of busy stations. © 1992. (EN)

journalArticle (EN)

Computer Science, Information Systems (EN)
THROUGHPUT (EN)
environment (EN)
multichannel (EN)
multiple access (EN)
Engineering, Electrical & Electronic (EN)
CHANNELS (EN)
Telecommunications (EN)
CSMA (EN)
Aloha-type protocols (EN)


Computer Communications (EN)

English

1992 (EN)

ISI:A1992JY85400002 (EN)
15 (EN)
0140-3664 (EN)
10.1016/0140-3664(92)90114-T (EN)
629 (EN)
619 (EN)
10 (EN)

ELSEVIER SCIENCE BV (EN)




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)