New aspects for the generalization of the Sokhotski-Plemelj formulae for the solution of finite-part singular integrals used in fracture mechanics

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



New aspects for the generalization of the Sokhotski-Plemelj formulae for the solution of finite-part singular integrals used in fracture mechanics (EN)

Ladopoulos, EG (EN)

N/A (EN)

New aspects for the generalization of the Sokhotski-Plemelj formulae are investigated, in order to show the behaviour of the limiting values of the finite-part singular integrals, defined over a smooth closed or open contour. The new formulae are more complicated when some corner points are further included in the contour. Beyond the above, when the contour is infinite, then the limiting values of the finite-part singular integrals are calculated by using an additional method. An application of two-dimensional fracture mechanics is finally given, to the determination of the stress intensity factors near a straight crack in a bimaterial infinite and isotropic solid under antiplane shear. © 1992 Kluwer Academic Publishers. (EN)

journalArticle

Fracture Mechanic (EN)
Singular Integral (EN)
EQUATIONS (EN)
Stress Intensity Factor (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

International Journal of Fracture (EN)

1992


Kluwer Academic Publishers (EN)



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.