Optimal control and relaxation of nonlinear elliptic systems

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Optimal control and relaxation of nonlinear elliptic systems (EN)

Papageorgiou, NS (EN)

N/A (EN)

In this paper we study the optimal control of systems driven by nonlinear elliptic partial differential equations. First, with the aid of an appropriate convexity hypothesis we establish the existence of optimal admissible pairs. Then we drop the convexity hypothesis and we pass to the larger relaxed system. First we consider a relaxed system based on the Gamkrelidze-Warga approach, in which the controls are transition probabilities. We show that this relaxed problem has always had a solution and the value of the problem is that of the original one. We also introduce two alternative formulations of the relaxed problem (one of them control free), which we show that they are both equivalent to the first one. Then we compare those relaxed problems, with that of Buttazzo which is based on the Λ-regularization of the ""extended"" cost functional. Finally, using a powerful multiplier rule of Ioffe-Tichomirov, we derive necessary conditions for optimality in systems with inequality state constraints. © 1992 Springer-Verlag. (EN)

journalArticle

Transition Probability (EN)
Elliptic Partial Differential Equation (EN)
Cost Function (EN)
EVOLUTION-EQUATIONS (EN)
Nonlinear Elliptic System (EN)
Optimal Control (EN)
State Constraints (EN)
RELAXED TRAJECTORIES (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

Monatshefte für Mathematik (EN)

1992


Springer-Verlag (EN)



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.