Computer-based manipulation of systems of equations in elasticity problems with Gröbner bases

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



Computer-based manipulation of systems of equations in elasticity problems with Gröbner bases (EN)

Anastasselou, EG (EN)
Ioakimidis, NI (EN)

N/A (EN)

The classical method of Buchberger's Gröbner bases for multivariate polynomial equations with a variety of applications in computer algebra is applied to three problems in elasticity concerning (i) a simple elastic truss, (ii) an elementary plane elasticity problem in rectangular coordinates, and (iii) the derivation of a compatibility partial differential equation for the stress components and the proof of biharmonicity of the same components also in plane elasticity. The present results aim at the practical illustration of the possibility of deriving computer-generated formulae in elasticity problems by using Gröbner bases (as has been done in the case of geometric problems) and the popular and modern computer algebra system Maple V (equipped with a related package) has been used. Further generalizations of the present results are quite possible and some of these are discussed in brief. © 1993. (EN)

journalArticle

Computational methods (EN)
Partial differential equations (EN)
Elasticity (EN)
Systems analysis (EN)
Boolean algebra (EN)
Grobner bases (EN)
Multivariate polynomial equations (EN)
Differential equations (EN)
System of Equations (EN)
Mathematical models (EN)
Polynomials (EN)
Computer aided analysis (EN)
Structural analysis (EN)
Trusses (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

Computer Methods in Applied Mechanics and Engineering (EN)

1993


ELSEVIER SCIENCE SA LAUSANNE (EN)



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.