Further research on the performance of consistent mass matrices using BEM for symmetric/nonsymmetric formulations

 
see the original item page
in the repository's web site and access all digital files if the item*
share




1995 (EN)
Further research on the performance of consistent mass matrices using BEM for symmetric/nonsymmetric formulations (EN)

Kanarachos, AE (EN)
Provatidis, ChG (EN)

N/A (EN)

This paper deals with the performance of consistent mass matrices for the 2-D scalar wave propagation problem using the Boundary Element Method (BEM), and proposes a new global functional set of base functions capable of avoiding domain integrations, suitable for symmetric and nonsymmetric formulations. The method can be applied to arbitrary shaped two-dimensional domains divided into triangular, rectangular and arbitrary shaped quadrilateral linear or curvilinear (e.g. circular) internal cells. The theory is sustained by numerical results for a rectangular and a circular acoustical cavity under Neumann and Dirichlet boundary conditions. © 1995 Springer-Verlag. (EN)

journalArticle

Mass matrices (EN)
Convergence of numerical methods (EN)
Integration (EN)
Acoustical cavity (EN)
Matrix algebra (EN)
Boundary conditions (EN)
Two dimensional domain (EN)
Functions (EN)
Boundary Element Method (EN)
Electromagnetic wave propagation (EN)
Global functional set (EN)
Dirichlet Boundary Condition (EN)
Differential equations (EN)
Boundary discretization (EN)
Wave Propagation (EN)
Eigenvalues and eigenfunctions (EN)
Boundary element method (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

Computational Mechanics (EN)

1995


Springer-Verlag (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)