A vorticity-streamfunction formulation for steady incompressible two-dimensional flows

see the original item page
in the repository's web site and access all digital files if the item*

1996 (EN)
A vorticity-streamfunction formulation for steady incompressible two-dimensional flows (EN)

Giannakoglou, K (EN)
Chaviaropoulos, P (EN)

N/A (EN)

A vorticity-streamfunction formulation for incompressible planar viscous flows is presented. The standard kinematic field equations are discretized using centred finite difference schemes and solved in a coupled way via a Newton-like linearization scheme. The linearized system of partial differential equations is handled through the restarting linear GMRES algorithm, preconditioned by means of an incomplete LU approximate factorization. The proposed solution technique constitutes a fast and robust algorithm for treating laminar flows at high Reynolds numbers. The pressure field is obtained at a subsequent step by solving a convection-diffusion equation in terms of the stagnation pressure, which presents certain advantages compared with the widely used static pressure Poisson equation. Results are shown for a wide variety of applications including internal and external flows. (EN)


Partial differential equations (EN)
incompressible flow (EN)
Incompressible flows (EN)
laminar flow (EN)
Heat convection (EN)
Diffusion in liquids (EN)
Laminar flows (EN)
Vorticity-streamfunction formulation (EN)
Kinematics (EN)
Mathematical models (EN)
stream functions (EN)
Linearization (EN)
Krylov subspace methods (EN)
vorticity (EN)
Reynolds number (EN)
Compressibility of liquids (EN)
Poisson equation (EN)
Incompressible flow (EN)
Algorithms (EN)
Laminar flow (EN)
Vortex flow (EN)
Vorticity streamfunction transformation (EN)
Preconditioning (EN)
Finite difference method (EN)
Viscous flow (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

International Journal for Numerical Methods in Fluids (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)