Comparative studies on the sugar esters synthesis catalysed by Candida antarctica and Candida rugosa lipases in hexane

 
see the original item page
in the repository's web site and access all digital files if the item*
share




1997 (EN)
Comparative studies on the sugar esters synthesis catalysed by Candida antarctica and Candida rugosa lipases in hexane (EN)

Tsitsimpikou, C (EN)
Daflos, H (EN)
Kolisis, FN (EN)

N/A (EN)

The regioselective acylation of monosaccharides, such as glucose, fructose, mannose and arabinose with lauric acid (C12) has been investigated in hexane using commercial Candida rugosa lipase (EC 3.1.1.3) and Candida antarctica (NOVO-ZYME) lipase immobilised on anionic resin. In order to overcome sugars insolubility in hexane, sugars were introduced in the reaction mixture preabsorbed on silica gel. The chemical structure of the products has been determined by 1H NMR analysis. The two enzymes tested seemed to prefer hexoses rather than pentoses as the sugar substrate. They exhibited different water activity optimums as well as different optimum sugar/acyl donor molar ratios. Water activity control throughout the reaction and temperature increase from 30 to 50°C enhanced sugar ester production using both lipases.The regioselective acylation of monosaccharides, such as glucose, fructose, mannose and arabinose with lauric acid (C12) has been investigated in hexane using commercial Candida rugosa lipase (EC 3.1.1.3) and Candida antarctica (NOVOZYME) lipase immobilised on anionic resin. In order to overcome sugars insolubility in hexane, sugars were introduced in the reaction mixture preabsorbed on silica gel. The chemical structure of the products has been determined by H NMR analysis. The two enzymes tested seemed to prefer hexoses rather than pentoses as the sugar substrate. They exhibited different water activity optimums as well as different optimum sugar/acyl donor molar ratios. Water activity control throughout the reaction and temperature increase from 30 to 50°C enhanced sugar ester production using both lipases. (EN)

journalArticle

monosaccharide (EN)
structure analysis (EN)
Esters (EN)
Glucose (EN)
Lipase (EN)
arabinose (EN)
Lipases (EN)
acylation (EN)
Monosaccharides (EN)
Water activity (EN)
enzyme activity (EN)
temperature (EN)
Bacteria (EN)
Enzyme immobilization (EN)
Sugars (EN)
Acylation (EN)
Paraffins (EN)
Enzymes (EN)
triacylglycerol lipase (EN)
glucose (EN)
mannose (EN)
Organic solvents (EN)
fructose (EN)
Fructose (EN)
article (EN)
chemical structure (EN)
nonhuman (EN)
Sugar-fatty acid esters (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

Journal of Molecular Catalysis - B Enzymatic (EN)

1997


Elsevier Sci B.V., Amsterdam, Netherlands (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)