Ανάλυση συναισθήματος βασισμένη σε χαρακτηριστικά

 
Το τεκμήριο παρέχεται από τον φορέα :

Αποθετήριο :
Εθνικό Αρχείο Διδακτορικών Διατριβών
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο




2014 (EL)
Aspect based sentiment analysis
Ανάλυση συναισθήματος βασισμένη σε χαρακτηριστικά

Παυλόπουλος, Ιωάννης
Pavlopoulos, Ioannis

Before buying a product or service, consumers often search for expert reviews, but increasingly also for opinions of other consumers. Many useful opinions are expressed in plain texts (e.g., in discussion fora or social media). It is then desirable to extract aspects (e.g., screen, battery) from the texts that discuss a particular target entity (e.g., a smartphone), i.e., figure out what is being discussed about the target entity, and also estimate aspect scores, i.e., how positive or negative the average sentiment for each aspect is. These two goals are jointly known as Aspect Based Sentiment Analysis (ABSA). Several ABSA systems have been developed, but there is no established framework to evaluate them and no consensus task decomposition of ABSA. This thesis proposes a decomposition of ABSA into three subtasks: aspect term extraction, aspect aggregation, and aspect sentiment estimation. Aspect term extraction identifies single- and multi-word terms that name aspects of the target entity (e.g., "battery", "hard disk"). Aspect aggregation groups similar aspect terms (e.g., "price" and "cost", but possibly also "design" and "color") into fewer or more clusters, depending on user preferences and other constraints (e.g., display size, when ABSA results are to be reported on mobile devices). Aspect sentiment estimation determines the average sentiment for each aspect term or cluster of aspect terms of the target entity. For each one of these subtasks, appropriate benchmark datasets from multiple domains (e.g., restaurant and laptop reviews) were constructed during the work of this thesis, which were also adopted (with some changes) in the SemEval 2014 and 2015 ABSA competitions. The thesis also proposes new evaluation measures for each subtask, arguing that they are more appropriate than previous, more commonly used measures. New methods or modifications of previous methods are also proposed for each subtask, and they are evaluated using the benchmark datasets and proposed evaluation measures, with experimental results showing that they are competitive to state of the art methods.
Τα συστήματα Ανάλυσης Συναισθήματος Βασισμένης σε Χαρακτηριστικά (Aspect Based Sentiment Analysis, ABSA) δέχονται ως είσοδο ένα σύνολο κειμένων (π.χ. κριτικές προϊόντων ή μηνύματα κοινωνικών δικτύων) που σχολιάζουν μια συγκεκριμένη οντότητα (π.χ. ένα συγκεκριμένο μοντέλου κινητού τηλεφώνου). Επιχειρούν να εντοπίσουν τα κυριότερα (π.χ. τα πιο συχνά σχολιαζόμενα) χαρακτηριστικά (aspects) της οντότητας (π.χ. μπαταρία, οθόνη), καθώς και να εκτιμήσουν το μέσο συναίσθημα (π.χ. πόσο θετικό ή αρνητικό είναι) που εκφράζουν τα κείμενα για κάθε χαρακτηριστικό της οντότητας. Αν και έχουν αναπτυχθεί αρκετά συστήματα αυτού του είδους, δεν υπάρχει καθιερωμένος τρόπος αποδόμησης και αξιολόγησης των εργασιών (tasks) που απαιτούν.Σε αυτή τη διατριβή προτείνεται μια αποδόμηση των εργασιών των συστημάτων ABSA που περιλαμβάνει τρεις υπο-εργασίες: εξαγωγή χαρακτηριστικών όρων (aspect term extraction), ομαδοποίηση χαρακτηριστικών (aspect aggregation) και εκτίμηση συναισθήματος (aspect estimation). Η πρώτη υπο-εργασία εντοπίζει όρους (π.χ. «μπαταρία», «σκληρός δίσκος») που κατονομάζουν χαρακτηριστικά της σχολιαζόμενης οντότητας. Η δεύτερη υπο-εργασία ομαδοποιεί συναφείς χαρακτηριστικούς όρους (π.χ. «τιμή», «κόστος», αλλά ενδεχομένως και «σχεδιασμός», «χρώμα»), ανάλογα με τις προτιμήσεις των χρηστών και άλλους περιορισμούς (π.χ. το μέγεθος της οθόνης της συσκευής στην οποία θα παρουσιαστούν τα αποτελέσματα του συστήματος ABSA). Η τρίτη υπο-εργασία εκτιμά το μέσο συναίσθημα για κάθε όρο χαρακτηριστικό όρο ή ομάδα όρων. Για κάθε μία από τις παραπάνω υπο-εργασίες, κατασκευάστηκαν κατάλληλα σύνολα δεδομένων (benchmark datasets) για διαφορετικά είδη οντοτήτων (π.χ. φορητοί υπολογιστές, εστιατόρια). Προτείνονται, επίσης, νέα μέτρα αξιολόγησης για κάθε μία από τις τρεις υπο-εργασίες, τα οποία είναι καταλληλότερα από άλλα υπάρχοντα μέτρα. Επίσης, για κάθε μία υπο-εργασία προτείνονται νέες μεθόδοι ή βελτιώσεις προηγουμένων μεθόδων και δείχνεται μέσω πειραμάτων ότι οι προτεινόμενες μέθοδοι (ή βελτιώσεις) επιτυγχάνουν καλύτερες ή τουλάχιστον συγκρίσιμες επιδόσεις με εκείνες των καλύτερων μεθόδων της διεθνούς βιβλιογραφίας.

Ανάλυση συναισθήματος
Sentiment analysis
Aspect aggregation
Εξαγωγή χαρακτηριστικών προιόντων
Aspect extraction
Ομαδοποίηση

Εθνικό Κέντρο Τεκμηρίωσης (ΕΚΤ) (EL)
National Documentation Centre (EKT) (EN)

Αγγλική γλώσσα

2014


Athens University Economics and Business (AUEB)
Οικονομικό Πανεπιστήμιο Αθηνών



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.