An Axiomatic System for a Physical or Digital but Continuous 3-Dimensional Euclidean Geometry, Without Infinite Many Points

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



An Axiomatic System for a Physical or Digital but Continuous 3-Dimensional Euclidean Geometry, Without Infinite Many Points

Kyritsis, Konstantinos

This paper is concerned with finding an axiomatic system, so as to define the 3-dimensional Euclidean space, without utilizing the infinite, that can imply all the known geometry for practical applied sciences and engineering applications through computers, and for more natural and perfect education of young people in the Euclidean geometric thinking. In other words by utilizing only finite many visible and invisible points and only finite sets, and only real numbers with finite many digits, in the decimal representation. The inspiration comes from the physical matter, rigid, liquid and gaseous, which consists of only finite many particles in the physical reality. Or from the way that continuity is produced in a computer screen from only finite many invisible pixels. We present such a system of axioms and explain why it is chosen in such a way. The result is obviously not equivalent, in all the details, with the classical Euclidean geometry. Our main concern is consistency and adequacy but not the independence of the axioms between them. It is obvious that within the space of a single paper, we do not attempt to produce all the main theorems of the Euclidean geometry, but present only the axioms.
It is the first digital Axiomatic System for the Euclidean Geometry, after Euclid, Cartesious, and Hilbert

Journal article

Axiomatic systems of Euclidean geometry
Constructive mathematics
Foundations of Mathematics, Geometry
Digital Mathematics


Αγγλική γλώσσα

2017-10-23T11:39:21Z
2017-10-08

2455-3956,
K.E. Kyritsis An Axiomatic System for a Physical or Digital but Continuous 3-Dimensional Euclidean Geometry, Without Infinite Many Points World Journal of Research and Review (WJRR) ISSN:2455-3956, Volume-5, Issue-4, October 2017 Pages 31-43

World Journal of Research and Review (WJRR) ISSN:2455-3956,



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.