Monitoring reactive oxygen species in vivo using microdialysis sampling and chemiluminescence detection as an alternative global method for determination of total antioxidant capacity

 
This item is provided by the institution :
University of Ioannina
Repository :
Repository of UOI Olympias
see the original item page
in the repository's web site and access all digital files if the item*
share



2002 (EN)
Monitoring reactive oxygen species in vivo using microdialysis sampling and chemiluminescence detection as an alternative global method for determination of total antioxidant capacity (EN)

Yao, D. C. (EN)

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας (EL)
Yao, D. C. (EN)

A microdialysis sampling system coupled to chemiluminescence (CL) detection was developed to monitor the variation of lucigenin (Luc) CL emission in vivo in real time. The Luc CL emission is linearly correlated to the d-ROM test, thus providing evidence of equivalence to total antioxidant capacity (TAC). Furthermore, the system is simple, low cost, rapid and sensitive enough for real time monitoring of TAC variation in vivo under different physiological and pathological conditions. It is accurate and far more precise than the traditional methods since it overcomes uncontrolled conditions of handling samples. The production capacity of reactive oxygen species (proROS capacity) of individual antioxidant compounds mostly found in biological fluids was investigated using lummol CL emission. The implications of the proROS capacity of antioxidant compounds in biological fluids is further discussed under the perspective of explaining the appearance of certain pathological diseases, and on the basis of establishing a healthy diet for human beings. Further investigation showed that ascorbic acid (AA) plays a protective role in living organisms, so a diet rich in AA is important for health. Furthermore, it was found that lower physiological level of AA or higher physiological level of uric acid (UA) or glucose (GLU) may reduce O-2 into reactive oxygen species (ROS, e.g. H2O2, O-2(.-)) in the presence of Fe(III). This may explain some syndromes in the cases of AA deficiency (e.g. scurvy) and related diseases, e.g. diabetes or gout. From the data obtained, there is a strong indication that the damage or pathological alternation is probably due to the higher level of ROS, which are generated from the reduced oxygen in the presence of pathological level of related reductants. (C) 2002 Elsevier Science B.V. All rights reserved. (EN)

total antioxidant capacity (EN)

Πανεπιστήμιο Ιωαννίνων (EL)
University of Ioannina (EN)

Analytica Chimica Acta (EN)

English

2002

<Go to ISI>://000177899000015

Elsevier Masson (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)