An experimental design approach employing artificial neural networks for the determination of potential endocrine disruptors in food using matrix solid-phase dispersion

 
This item is provided by the institution :
University of Ioannina
Repository :
Repository of UOI Olympias
see the original item page
in the repository's web site and access all digital files if the item*
share



2009 (EN)
An experimental design approach employing artificial neural networks for the determination of potential endocrine disruptors in food using matrix solid-phase dispersion (EN)

Boti, V. I. (EN)

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας (EL)
Boti, V. I. (EN)

Matrix solid-phase dispersion (MSPD) as a sample preparation method for the determination of two potential endocrine disruptors, linuron and diuron and their common metabolites, 1-(3,4-dichlorophenyl)-3-methylurea (DCPMU), 1-(3,4-dichlorophenyl) urea (DCPU) and 3,4-dichloroaniline (3,4-DCA) in food commodities has been developed. The influence of the main factors on the extraction process yield was thoroughly evaluated. For that purpose, a 3((4-1)) fractional factorial design in further combination with artificial neural networks (ANNs) was employed. The optimal networks found were afterwards used to identify the optimum region corresponding to the highest average recovery displaying at the same time the lowest standard deviation for all analytes. Under final optimal conditions, potato samples (0.5 g) were mixed and dispersed on the same amount of Florisil. The blend was transferred on a polypropylene cartridge and analytes were eluted using 10 ml of methanol. The extract was concentrated to 50 mu l of acetonitrile/water (50:50) and injected in a high performance liquid chromatography coupled to UV-diode array detector system (HPLC/UV-DAD). Recoveries ranging from 55 to 96% and quantification limits between 5.3 and 15.2 ng/g were achieved. The method was also applied to other selected food commodities such as apple, carrot, cereals/wheat flour and orange juice demonstrating very good overall performance. (C) 2008 Elsevier B.V. All rights reserved. (EN)

experimental design (EN)

Πανεπιστήμιο Ιωαννίνων (EL)
University of Ioannina (EN)

Journal of Chromatography A (EN)

English

2009

<Go to ISI>://000263610500004

Elsevier (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)