see the original item page
in the repository's web site and access all digital files if the item*

2009 (EN)
Αλγεβρες του Galois
Galois algebras

Λαμπράκης, Χρήστος Ιωάννη

M.Auslander and O.Goldman in 1960 in their article «The Brauer Group of a Commutative Ring» gave a definition of a Galois extension of a commutative ring with Galois group G. In this essay we deal mainly with Galois Algebras of non commutative rings and give some theorems about their structure and their properties. We give also a characterization of a Galois Algebra that satisfies the Fundamental Theorem.
Οι M.Auslander και O.Goldman το 1960 στο άρθρο τους «The Brauer Group of a Commutative Ring» έδωσαν τον ορισμό της επέκτασης Galois ενός αντιμεταθετικού δακτυλίου με ομάδα του Galois G. Στη παρούσα εργασία ασχολούμαστε κυρίως με άλγεβρες του Galois μη αντιμεταθετικών δακτυλίων και δίνουμε μερικά θεωρήματα για την δομή και τις ιδιότητές τους. Δίνουμε επίσης ένα χαρακτηρισμό για μια άλγεβρα του Galois που ικανοποιεί το Θεμελιώδες Θεώρημα.

Postgraduate Thesis / Μεταπτυχιακή Εργασία

Επεκτάσεις δακτυλίων
Θεμελιώδες θεώρημα
Ring extensions
Galois algebras
Fundamental theorem
Αλγεβρες Galois

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (EL)
Aristotle University of Thessaloniki (EN)



Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών

This record is part of 'IKEE', the Institutional Repository of Aristotle University of Thessaloniki's Library and Information Centre found at Unless otherwise stated above, the record metadata were created by and belong to Aristotle University of Thessaloniki Library, Greece and are made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license ( Unless otherwise stated in the record, the content and copyright of files and fulltext documents belong to their respective authors. Out-of-copyright content that was digitized, converted, processed, modified, etc by AUTh Library, is made available to the public under Creative Commons Attribution-ShareAlike 4.0 International license ( You are kindly requested to make a reference to AUTh Library and the URL of the record containing the resource whenever you make use of this material.

*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)