Probing the microstructure of cement mortars through dielectric parameters’ variation

 
This item is provided by the institution :
Technological Educational Institute of Athens
Repository :
Ypatia - Institutional Repository
see the original item page
in the repository's web site and access all digital files if the item*
share




2009 (EN)
Probing the microstructure of cement mortars through dielectric parameters’ variation (EN)

Τσώνος, Χρήστος (EL)
Σταύρακας, Ι. (EL)
Καναπίτσας, Αλέξανδρος Α. (EL)
Αθανασιάδης, Χ. (EL)
Κυριαζόπουλος, Αντώνης (EL)

Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. (EL)
Τριάντης, Δήμος Α. (EL)

The present work deals with the electrical properties of typical cement mortars during the hardening process, cured at low relative humidity. Measurements were made by using dielectric spectroscopy (DS) over a broad frequency range of 10 Hz–1 MHz and isothermal depolarization current (IDC) techniques, for several weeks after sample preparation. This work presents a coherent study of the various formalisms employed in dielectric spectroscopy. Each of these formalisms contributes to the development of the complete relaxation mechanisms that are responsible for the frequency spectrum. After the first week of hardening, when the DC conductivity effects were absent, two distinct dielectric relaxation mechanisms were observed in the frequency spectrum of the complex permittivity ε* and tan δ functions. The mechanism positioned at low-frequency region (few kHz) is observed for the first time, as we know from the literature, on cement mortars. The relaxation times of both mechanisms were found to increase gradually, while the strength of the relaxation mechanisms varied also as a function of the hardening time. Fitting analysis in complex impedance Z* and electric modulus M* formalisms revealed also the existence of two short-range relaxation mechanisms of conductivity. We suggest that the low-frequency relaxation is related to the closed capillary pores and the high-frequency relaxation to the C-S-H gel pores. An increase of the mean dimension, of both types of pores, estimated from our data analysis with hardening time. (EN)

journalArticle

Dielectric properties (EN)
Microporous materials (EN)
Διηλεκτρικές ιδιότητες (EN)
Μικροπορώδη υλικά (EN)

ΤΕΙ Αθήνας (EL)
Technological Educational Institute of Athens (EN)

Journal of Physics and Chemistry of Solids (EN)

English

2009

doi:10.1016/j.jpcs.2008.12.015

Elsevier B.V. (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)