Fast parallel approximations of the maximum weighted cut problem through derandomization

This item is provided by the institution :
Technological Educational Institute of Athens   

Repository :
Ypatia - Institutional Repository   

see the original item page
in the repository's web site and access all digital files if the item*



Fast parallel approximations of the maximum weighted cut problem through derandomization (EN)

Σπυράκης, Παύλος (EL)
Ζαρολιάγκης, Χρήστος (EL)
Πάντζιου, Γραμματή Ε. (EL)

full paper
conferenceItem

2015-05-29T20:07:00Z
2015-05-29

1989-12-19


Given a graph with positive integer edge weights one may ask whether there exists an edge cut whose weight is bigger than a given number. This problem is NP-Complete. We present here an approximation scheme in NC which provides tight upper bounds to the proportion of edge cuts whose size is bigger than a given number. Our technique is based on the method to convert randomized algorithms into deterinistic ones, introduced by [Luby, 85 and 88]. The basic idea of those methods is to replace an exponentially large sample space by one of polynomial size. Our work examines the statistical distance of random variables of the small sample space to corresponding variables of the exponentially large space, which is the space of all edge cuts taken equiprobably. (EN)
Proceedings of the Ninth Conference (EN)


algorithms
**N/A**-Πληροφορική
αλγόριθμοι
βάρος
methods
Science
http://skos.um.es/unescothes/C03532
http://skos.um.es/unescothes/C00750
Πληροφορική
Weight
τεχνικές
Computer science
**N/A**-Επιστήμες
techniques
Επιστήμες
μέθοδοι
http://id.loc.gov/authorities/subjects/sh2002006552
ποσοστό των κοψιμάτων ακμής
proportion of edge cuts

Springer Berlin Heidelberg (EN)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. (EL)

http://link.springer.com/chapter/10.1007%2F3-540-52048-1_29

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
forever




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)