A novel evolutionary algorithm for hierarchical neural architecture search

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



A novel evolutionary algorithm for hierarchical neural architecture search (EN)

Χριστοφορίδης, Αριστείδης (EL)

Μαργαρίτης, Κωνσταντίνος (EL)

Electronic Thesis or Dissertation (EN)
Text (EN)

2021-07-13T17:11:27Z
2021 (EL)


Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2021. (EL)
Approved for entry into archive by Κυριακή Μπαλτά ([email protected]) on 2021-07-13T17:11:27Z (GMT) No. of bitstreams: 3 license_rdf: 701 bytes, checksum: 42fd4ad1e89814f5e4a476b409eb708c (MD5) ChristoforidisAristeidisMsc2021.pdf: 1601827 bytes, checksum: 8d26bffdbf7a2c4b61c010d30f6569b8 (MD5) ChristoforidisAristeidisMsc2021present.pdf: 1616687 bytes, checksum: 898fcf57f6202e038d656de1100ee3bf (MD5) (EN)
Made available in DSpace on 2021-07-13T17:11:27Z (GMT). No. of bitstreams: 3 license_rdf: 701 bytes, checksum: 42fd4ad1e89814f5e4a476b409eb708c (MD5) ChristoforidisAristeidisMsc2021.pdf: 1601827 bytes, checksum: 8d26bffdbf7a2c4b61c010d30f6569b8 (MD5) ChristoforidisAristeidisMsc2021present.pdf: 1616687 bytes, checksum: 898fcf57f6202e038d656de1100ee3bf (MD5) Previous issue date: 2021-06-29 (EN)
In this thesis, we propose a new neural architecture search algorithm that performs network discovery in global search spaces. We introduce a novel network representation that organizes the topology on multiple hierarchical levels of varying abstraction and develop an evolution based search process that exploits this structure to explore the search space. Our approach involved a curation system that selects well performing network components and uses them in subsequent generations to build better networks. Next, we investigate how the proposed method performs on different types of data. First, we apply our method on an activity recognition time series dataset and manage to discover a topology with impressive performance. We also test the method on two image classification datasets, Fashion-MNIST and NAS-Bench-101 and achieve accuracies of 93.2% and 94.8% respectively in a small amount of time. (EN)
Submitted by ΑΡΙΣΤΕΙΔΗΣ ΧΡΙΣΤΟΦΟΡΙΔΗΣ ([email protected]) on 2021-07-13T08:25:04Z No. of bitstreams: 3 license_rdf: 701 bytes, checksum: 42fd4ad1e89814f5e4a476b409eb708c (MD5) ChristoforidisAristeidisMsc2021.pdf: 1601827 bytes, checksum: 8d26bffdbf7a2c4b61c010d30f6569b8 (MD5) ChristoforidisAristeidisMsc2021present.pdf: 1616687 bytes, checksum: 898fcf57f6202e038d656de1100ee3bf (MD5) (EN)


Deep neural networks (EN)
Neural architecture search (EN)

Πανεπιστήμιο Μακεδονίας (EL)

Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (EL)

CC0 1.0 Παγκόσμια (EL)
http://creativecommons.org/publicdomain/zero/1.0/




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.