Train-scheduling for railway networks using basic kinematics and A*

Train-scheduling for railway networks using basic kinematics and A* (EN)

Μανωλάκης, Δημήτρης (EL)

Ρεφανίδης, Ιωάννης (EL)

Electronic Thesis or Dissertation (EN)
Text (EN)

2024-03-12T13:02:12Z
2024 (EL)


Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024. (EL)
Submitted by ΔΗΜΗΤΡΙΟΣ ΜΑΝΩΛΑΚΗΣ ([email protected]) on 2024-03-11T12:46:29Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) ManolakisDimitrisMsc2024.pdf: 981023 bytes, checksum: bb7968f487249ad38586a1a94febfa76 (MD5) (EN)
Made available in DSpace on 2024-03-12T13:02:12Z (GMT). No. of bitstreams: 3 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) ManolakisDimitrisMsc2024.pdf: 2848060 bytes, checksum: 5ca2dec7f9cb68c4ed8b433581540080 (MD5) ManolakisDimitrisMsc2024Presentation.pdf: 981023 bytes, checksum: bb7968f487249ad38586a1a94febfa76 (MD5) Previous issue date: 2024-03-11 (EN)
This thesis tackles the problem of finding time optimal routes for trains over a railway network. The problem is defined as follows: A train has a known length. The position of the train is defined over parts of one or more consecutive track segments. There are a maximum speed, a maximum acceleration and a maximum deceleration capability for the train. Each track segment has a maximum allowed speed for any train being over it. A problem instance is defined by an initial and a goal state, which are two positions accompanied with desired speeds (being usually, but not necessarily, zero). In this study we are interested in minimizing the total duration of reaching the goal state from the initial one; other metrics such as fuel consumption could be considered. We solve this problem using basic kinematics and A*. We present two algorithms: The first one computes analytically in continuous space the optimal speed profile of the train for a problem defined over a given path. The second algorithm extends the first one over arbitrary graphs. A* empowered with a simple admissible heuristic is employed to find the optimal combination of speed profile and path. (EN)
Rejected by Κυριακή Μπαλτά ([email protected]), reason: Να αναρτηθεί το κείμενο της εργασίας σας, έχετε αναρτήσει μόνο την παρουσίαση της on 2024-03-12T07:41:17Z (GMT) (EN)
Approved for entry into archive by Κυριακή Μπαλτά ([email protected]) on 2024-03-12T13:02:12Z (GMT) No. of bitstreams: 3 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) ManolakisDimitrisMsc2024.pdf: 2848060 bytes, checksum: 5ca2dec7f9cb68c4ed8b433581540080 (MD5) ManolakisDimitrisMsc2024Presentation.pdf: 981023 bytes, checksum: bb7968f487249ad38586a1a94febfa76 (MD5) (EN)
Submitted by ΔΗΜΗΤΡΙΟΣ ΜΑΝΩΛΑΚΗΣ ([email protected]) on 2024-03-12T12:36:16Z No. of bitstreams: 3 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) ManolakisDimitrisMsc2024.pdf: 2848060 bytes, checksum: 5ca2dec7f9cb68c4ed8b433581540080 (MD5) ManolakisDimitrisMsc2024Presentation.pdf: 981023 bytes, checksum: bb7968f487249ad38586a1a94febfa76 (MD5) (EN)


Heuristic Search (EN)

Πανεπιστήμιο Μακεδονίας (EL)

Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (EL)

Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές (EL)
http://creativecommons.org/licenses/by-nc-nd/4.0/




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)