δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



Fake News Detection (EN)

Chouliara, Vasiliki (EL)

Tjortjis, Christos (EL)
Koukaras, Paraskevas (EL)
Berberidis, Christos (EN)

masterThesis

2023-04-11T12:16:29Z
2023-04-11
2023-01-27


Easy and quick information diffusion on the web and especially in social media (i.e., Facebook, Twitter, etc.) has been rapidly proliferating during the past decades. As information is posted without any kind of verification of its veracity, fake news has become a problem of great influence in our information driven society. With the current rate of news generated in social media, the differentiation between real and fake news has become challenging. Thus, to mitigate the consequences of fake news and its propagation, considerable research has been conducted both by the academia and the industry, to create automated approaches to detect malicious content. A plethora of approaches have been investigated, most of which identify patterns on fake news after they are already disseminated. The need for early detection methods is crucial. The goal of this thesis is to review the current approaches for detecting disinformation and propose an effective framework that utilizes only the text features of the news, without using any other related metadata. Several Machine Learning models and Natural Language Processing techniques have been used during experimentation. The findings reveal that a combination of linguistic features and text-based word vector representations through ensemble methods can predict fake news with high accuracy. (EL)


Deep learning (EL)
Text analytics (EL)
Machine learning (EL)
Fake news detection (EL)

Αγγλική γλώσσα

School of Science and Technology, MSc in Data Science
IHU (EL)

Default License




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.