Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan

This item is provided by the institution :

Repository :
Repository of UOI Olympias
see the original item page
in the repository's web site and access all digital files if the item*

Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan (EN)

Vardakou, M. (EN)

Πανεπιστήμιο Ιωαννίνων. Σχολή Επιστημών και Τεχνολογιών. Τμήμα Βιολογικών Εφαρμογών και Τεχνολογιών (EL)
Vardakou, M. (EN)

Microbial endo-beta-1,4-xylanases (EXs, EC belonging to glycanase families 10 and 11 differ in their action on water-unextractable arabinoxylan (WU-AX). WU-AX was incubated with different levels of a Thermoascus aurantiacus family 10 and a Sporotrichum thermophile family 11 endoxylanases. At 10 g l(-1) arabinoxylan, enzyme concentrations (KE values) needed to obtain half-maximal hydrolysis rates (V(max) values) were 4.4 nM for the xylanase from T. aurantiacus and 7.1 nM for the xylanase from S. thermophile. Determination of Vmax/KE revealed that the family 10 enzyme hydrolysed two times more efficiently WU-AX than the family 11 enzyme. Molecular weights of the products formed were assessed and separation of feruloyl-oligosaccharides was achieved by anion-exchange and size-exclusion chromatography (SEC). The main difference between the feruloylated products by xylanases of family 10 and 11 concerned the length of the products containing feruloyl-arabinosyl substitution. The xylanase from T. aurantiacus liberated from WU-AX a feruloyl arabinoxylodisaccharide (FAX2) as the shortest feruloylated fragment in contrast with the enzyme from S. thermophile, which liberated a feruloyl arabinoxylotrisaccharide (FAX3). These results indicated that different factors govern WU-AX breakdown by the two endoxylanases. (EN)

Biochemistry/methods (EN)

Int J Biol Macromol (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)