Structure, Energetics and Bonding of First Row Transition Metal Bispentazole Complexes: A DFT Study

 
This item is provided by the institution :
University of Ioannina
Repository :
Repository of UOI Olympias
see the original item page
in the repository's web site and access all digital files if the item*
share



2004 (EN)
Structure, Energetics and Bonding of First Row Transition Metal Bispentazole Complexes: A DFT Study (EN)

Tsipis, A. C. (EN)

Πανεπιστήμιο Ιωαννίνων. Σχολή Θετικών Επιστημών. Τμήμα Χημείας (EL)
Tsipis, A. C. (EN)

Quantum chemical calculations with gradient-corrected (B3LYP) density functional theory for the mono- and bispentazolato complexes of the first row transition metals (V, Cr, Mn, Fe, Co, and Ni), the all-nitrogen counterparts of metallocenes, were performed, and their stability was investigated. All possible bonding modes (e.g. η1, η2, η3, and η5) of the pentazolato ligand to the transition metals have been examined. The transition metal pentazolato complexes are predicted to be strongly bound molecules. The computed total bond dissociation enthalpies that yield free transition metal atoms in their ground states and the free pentazolato ligands were found in the range of 122.0�201.9 (3.7�102.3) kcal mol-1 for the bispentazolato (monopentazolato) complexes, while those yielding M2+ and anionic pentazolato ligands were found in the range of 473.2�516.7 (273.6�353.5) kcal mol-1. The electronic ground states of azametallocenes along with their spectroscopic properties (IR, NMR, and UV�vis) obtained in a consistent manner across the first transition metal series provide means for discussion of their electronic and bonding properties, the identification of the respective azametallocenes, and future laboratory studies. Finally, exploring synthetic routes to azametallocenes it was found that a [2 + 3] cycloaddition of dinitrogen to a coordinated azide ligand with nickel(II) does not seem to provide a promising synthetic route for transition metal pentazolato complexes while the oxidative addition of phenylpentazole and fluoropentazole to Ni(0) bisphosphane complexes merits attention for the experimentalists. (EN)

Πανεπιστήμιο Ιωαννίνων (EL)
University of Ioannina (EN)

Inorg Chem (EN)

English

2004


American Chemical Society (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)