Developing automated valuation models for estimating property values: a comparison of global and locally weighted approaches

Το τεκμήριο παρέχεται από τον φορέα :
Πολυτεχνείο Κρήτης   

Αποθετήριο :
Ιδρυματικό Αποθετήριο Πολυτεχνείου Κρήτης   

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



Developing automated valuation models for estimating property values: a comparison of global and locally weighted approaches (EN)

Δουμπος Μιχαηλ (EL)
Ζοπουνιδης Κωνσταντινος (EL)
Doumpos Michail (EN)
Zopounidis Konstantinos (EN)
Andritsos Dimitrios (EN)
Papastamos Dimitrios (EN)

journalArticle

2021


Automated valuation models are widely used in real estate to provide estimates for property prices. Such models are typically developed through regression approaches. This study presents a comparative analysis about the performance of parametric and non-parametric regression techniques for developing reliable automated valuation models for residential properties. Different approaches are explored to incorporate spatial effects into the valuation process, covering both global and locally weighted models. The analysis is based on a large sample of properties from Greece during the period 2012–2016. The results demonstrate that linear regression models developed with a weighted spatial (local) scheme provide the best results, outperforming machine learning approaches and models that do not consider spatial effects. (EN)

Non-parametric regression (EN)
Automated valuation models (EN)
Real estate (EN)

Annals of Operations Research (EN)

Αγγλική γλώσσα

Springer Nature (EN)

Πολυτεχνείο Κρήτης (EL)
Technical University of Crete (EN)




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.