Audit of reliability and repeatability of the non-invasive device of elastometer

 
This item is provided by the institution :
University of Crete
Repository :
E-Locus Institutional Repository
see the original item page
in the repository's web site and access all digital files if the item*
share



2013 (EN)
Έλεγχος αξιοπιστίας και επαναληψιμότητας συσκευής μη επεμβατικής ελαστομετρίας
Audit of reliability and repeatability of the non-invasive device of elastometer

Δούκα, Χρυσούλα

Γκίνης, Χαρίλαος
Τσιλιμπάρης, Μιλτιάδης
Δετοράκης, Ευστάθιος

Σκοπός Διάφορα όργανα και μέθοδοι εφαρμόζονται για τη μέτρηση της ενδοφθάλμιας πίεσης (ΕΟΠ), ως επί το πλείστον με βάση την αρχή της ασκούμενης δύναμης-παραμόρφωσης περιοχής. Η οφθαλμική ακαμψία είναι παράμετρος που εκφράζει τις ελαστικές ιδιότητες του οφθαλμού και ορίζεται μαθηματικά ως ο λόγος της μεταβολής της πίεσης προς τη μεταβολή του όγκου του οφθαλμού. Ο συντελεστής οφθαλμικής ακαμψίας, που σύμφωνα και με τον Friedenwald,αποτελεί το μέτρο αντίστασης που προβάλλει ο οφθαλμός στις δυνάμεις που τείνουν να τον παραμορφώσουν, προκύπτει από την κλίση της ευθείας της πίεσης συναρτήσει του όγκου παραμόρφωσης του οφθαλμού. Ωστόσο, η μέτρηση της οφθαλμικής ακαμψίας παραμένει προβληματική λόγω της έλλειψης ακριβούς, κλινικά εφικτής, μη επεμβατικής τεχνικής μέτρησης. Ο σκοπός αυτής της μελέτης ήταν να παρουσιάσει μια νέα συσκευή για τη μέτρηση της ΕΟΠ και της οφθαλμικής ακαμψίας. Μέθοδοι - Συσκευή Η συσκευή αποτελείται από μία οπτικο-μηχανική κεφαλή, που περιλαμβάνει έναν αισθητήρα παραμόρφωσης και έναν αισθητήρα δύναμης, μια κάμερα και ένα microstepping κινητήρα. Ο αισθητήρας παραμόρφωσης είναι μια συσκευή οπτοηλεκτρονική αποτελούμενη από δύο διαχωριστές δέσμης, ένα επιπεδόκυρτο φακό, μία ίνα φωτισμού και ένα δέκτη ινών. Πραγματοποιείται ευθυγράμμιση του αισθητήρα με τον εξεταζόμενο οφθαλμό μέσω μιας κάμερας που είναι τοποθετημένη επί του άξονα του οργάνου. Η ευθυγράμμιση γίνεται με βάση την υπέρθεση της αντανάκλασης της πηγής φωτισμού από τα οπτικά μέσα του οργάνου και την πρώτη εικόνα του Purkinje από τον κερατοειδή, ενώ ο υπό εξέταση οφθαλμός εστιάζει στην πηγή. Αυτό εξασφαλίζει ότι το επίπεδο που ορίζεται από την ακμή επιπέδωσης είναι κάθετο ως προς τον άξονα του οργάνου.Στη μελέτη αυτή εξετάστηκαν 118 οφθαλμοί στα οποία η ΕΟΠ μετρήθηκε με τη νέα συσκευή μετά τη μέτρηση με ένα τονόμετρο Goldmann (Goldman Ablanation Tonometry GAT). 5 Αποτελέσματα Η μέση ηλικία των συμμετεχόντων ήταν 60,42 χρόνια (±18,53 χρόνια). Η μέση ενδοφθάλμια πίεση όπως μετρήθηκε με την καινούρια μή επεμβατική συσκευή ήταν 12,995 mmHg (±5,997 mmHg), ενώ η ίδια μέση ενδοφθάλμια πίεση μετρημένη με το τονόμετρο Goldman ήταν 14,120 mmHg (±2,56 mmHg). Η απόλυτη μέση διαφορά μεταξύ των δύο συσκευών ήταν 4,40 mmHg (± 3,56 mmHg) και ο συντελεστής συσχέτισης μεταξύ των μετρήσεων με τις δύο συσκευές είναι p =0,002. Ο συντελεστής οφθαλμικής ακαμψίας ήταν 0,017μl−1 (±0,026 μl−1 ). Συμπεράσματα Η μη επεμβατική μέθοδος που περιγράφεται και αξιολογείται στην παρούσα μελέτη θεωρητικά είναι ένας τρόπος μέτρησης της ενδοφθάλμιας πίεσης. Συγκριτικές μετρήσεις με την κοινώς χρησιμοποιούμενη συσκευή Goldman παρουσιάζουν στο παρόν στάδιο στατιστικά σημαντικές αποκλίσεις κάτι που φαίνεται και στον χαμηλό δείκτη συσχέτισης (p =0,002) για 95% επίπεδο σημαντικότητας. Περαιτέρω μετρήσεις και τροποποιήσεις απαιτούνται να γίνουν στην παρούσα συσκευή για την εξάλειψη των σφαλμάτων που προκύπτουν και την συμφωνία τους με τις μετρήσεις του τονομέτρου Goldman. (EL)
Purpose Various instruments and methods applied for the measurement of intraocular pressure (IOP), mostly on the basis of the applied force-deformation region. The ocular regitity is a parameter expressing the elastic properties of the eye and is defined mathematically as the ratio of the change in intraocular pressure to the change of the volume of the eye. Ocular rigidity coefficient, which according to the Friedenwald, is the measure of resistance of the eye to the forces that tend to deform it, is represented by the slope of the line of intraocular pressure versus volume of deformation of the eye. However, the measurement of ocular rigidity remains problematic due to the lack of accurate, clinically viable, non-invasive measurement technique. The purpose of this study was to present a new device for the measurement of IOP and ocular rigidity. Methods-device The apparatus consists of an opto-mechanical head, which comprises a sensor and a deformation force sensor, a camera and a microstepping motor. The deformation sensor is a device consisting of two optoelectronics beamsplitter, a plano lens, a fiber and a light receiver fiber. Carry sensor alignment with the tested eye through a camera is mounted on the axis of the instrument. The alignment is based on the superposition of the reflection of the light source from the optics of the instrument and the first Purkinje image of the cornea and the eye under examination focuses on the source. This ensures that the plane defined by the edge flattening is perpendicular to the axis of the instrument. This study examined 118 of eyes (right and left) in which IOP was measured with the new device after measuring with a tonometer Goldmann (GAT). Results The mean age of participants was 60,42 years (±18,53 years). IOP was measured with the device was 12,995 mmHg (±5,997 mmHg), while GAT IOP was 14,120 mmHg (±2,56 mmHg). The absolute mean difference between the two devices 4,40 mmHg (± 3,56 7 mmHg) and the correlation index between the two devices was p=0,992. The coefficient of ocular rigidity measurements were 0,017μl−1 (±0,026 μl−1 ). Conclusions The non-invasive method is described and evaluated in this study is theoretically a way of measuring intraocular pressure. Comparative measurements done using the commonly used device Goldman exhibiting at this stage statistically significant deviations, which is obvious by the low correlation index (p = 0,002) for 95% significance level. Further measurements and modifications need to be made to this device to eliminate errors, and their agreement with the measurements of the tonometer Goldman. (EN)

text

Επαναληψιμότητα
Repeatability
Μη επεμβατικό ελαστόμετρο
Reliability
Αξιοπιστία
Non invasive elastometer

Πανεπιστήμιο Κρήτης (EL)
University of Crete (EN)

2013-07-16




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)