δείτε την πρωτότυπη σελίδα τεκμηρίου στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
Efficient neural network-based methodology for the design of multiple classifiers
(EN)
Recent Advances in Artificial Neural Networks
(EN)
A neural network-based methodology for time and memory efficient supervised or unsupervised classification in heavily demanding applications is presented in this chapter. Significantly increased speed in the design (training) of neural, fuzzy and statistical classifiers as well as in the classification phase is achieved by: (a) using a self-organizing feature map (SOFM) for vector quantization and indexed representation of the input data space; (b) appropriate training set reduction using the SOFM prototypes followed by necessary modifications of the training algorithms (supervised techniques); (c) clustering of neurons on maps instead of clustering the original data (unsupervised techniques); and (d) fast indexed classification. Finally, a demonstration of this method-ology involving the design of multiple classifiers is performed on Land-Cover classification of multispectral satellite image data showing increased speed with respect to both training and classification times.
(EN)
*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.
Βοηθείστε μας να κάνουμε καλύτερο το OpenArchives.gr.