Efficient neural network-based methodology for the design of multiple classifiers

 
This item is provided by the institution :
Technological Educational Institute of Athens
Repository :
Ypatia - Institutional Repository
see the original item page
in the repository's web site and access all digital files if the item*
share



Chapter (EN)
Book part (EN)

2000 (EN)
Efficient neural network-based methodology for the design of multiple classifiers (EN)

Βασιλάς, Νικόλαος (EL)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. (EL)

A neural network-based methodology for time and memory efficient supervised or unsupervised classification in heavily demanding applications is presented in this chapter. Significantly increased speed in the design (training) of neural, fuzzy and statistical classifiers as well as in the classification phase is achieved by: (a) using a self-organizing feature map (SOFM) for vector quantization and indexed representation of the input data space; (b) appropriate training set reduction using the SOFM prototypes followed by necessary modifications of the training algorithms (supervised techniques); (c) clustering of neurons on maps instead of clustering the original data (unsupervised techniques); and (d) fast indexed classification. Finally, a demonstration of this method-ology involving the design of multiple classifiers is performed on Land-Cover classification of multispectral satellite image data showing increased speed with respect to both training and classification times. (EN)

bookChapter

Πολλαπλοί ταξινομητές (EN)
ταξινόμηση (EN)
νευρωνικό δίκτυο (EN)
memory efficient (EN)
αποδοτική μνήμη (EN)
Neural networks (EN)
Research--Methodology (EN)
classification (EN)
Μεθοδολογία (EN)
αλγόριθμος (EN)
Multiple Classifiers (EN)
algorithm (EN)

ΤΕΙ Αθήνας (EL)
Technological Educational Institute of Athens (EN)

English

2000-03-09

ISBN: 9781439821992

CRC Press (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)