Το τεκμήριο παρέχεται από τον φορέα :
ΤΕΙ Αθήνας   

Αποθετήριο :
Υπατία - Ιδρυματικό Αποθετήριο   

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



Quickest paths (EN)

Καγάρης, Δημήτριος (EL)
Ζαρολιάγκης, Χρήστος (EL)
Πάντζιου, Γραμματή Ε. (EL)
Τραγούδας, Σπύρος (EL)

full paper
conferenceItem

2015-05-28T20:16:06Z
2015-05-28

1995-01-03


Let N=(V,E,c,l) be a network, where G=(V,E) is a directed graph (|V|=n and |E|=m), c(e)>0 is the capacity and l(e)⩾0 is the lead time for each edge e∈E. The transmission time to send σ units of data from a given source s to a destination t using path p is T(σ,p) = l(p) + σ/c(p), where l(p) is the sum of the lead times of the edges in p, and c(p) is the minimum capacity of the edges in p. The quickest path problem is to find a path of minimum transmission time to transmit the σ units of data from s to t. The problem has applications to fast data transmissions in communication networks. We present parallel algorithms for solving the quickest path problem in the case where the network is sparse [i.e. m=O(n)]. We also give algorithms for solving the dynamic quickest path problem. In this problem, the network, the lead times and the capacities on its edges, as well as the amount of data to be transmitted, change over time. The goal is to build a data structure so that one can very quickly compute the quickest path to transmit a given amount of data from any node s to any node t and also, after a dynamic change (edge lead time or edge capacity modification, or edge deletion) on the input network, to be able to update the data structure in an appropriately short time. Furthermore, we improve upon the best sequential result for the single pair quickest path problem which needs O(rm+rn log n) time, where r is the number of distinct edge capacities. (EN)
Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS-28) (EN)


Operations research
Directed graphs
Science
http://skos.um.es/unescothes/C03532
Data structures (Computer science)
Parallel algorithms
http://id.loc.gov/authorities/subjects/sh85035862
travelling salesman problems
επιχειρησιακή έρευνα
http://zbw.eu/stw/descriptor/15483-0
telecommunication networks
Επιστήμες
δομή δεδομένων
**N/A**-Πληροφορική
πρόβλημα του πλανόδιου πωλητή
http://skos.um.es/unescothes/C00750
Computational complexity
http://id.loc.gov/authorities/subjects/sh98003394
Πληροφορική
υπολογιστική πολυπλοκότητα
Computer science
**N/A**-Επιστήμες
κατευθυνόμενα γραφήματα
παράλληλοι αλγόριθμοι
τηλεπικοινωνιακά δίκτυα
http://id.loc.gov/authorities/subjects/sh85029473
http://id.loc.gov/authorities/subjects/sh85038262

IEEE (EN)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. (EL)

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=375479&abstractAccess=no&userType=inst

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
forever




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.