L2-Error bounds for approximate solutions of elliptic partial differential equations with Dirichlet-boundary conditions

 
see the original item page
in the repository's web site and access all digital files if the item*
share




1989 (EN)
L2-Error bounds for approximate solutions of elliptic partial differential equations with Dirichlet-boundary conditions (EN)

Kioustelidis, JB (EN)

N/A (EN)

New a posteriori (computable) upper bounds for the L2-norms, both of D(u-v) and of u-v are proposed, where u is the exact solution of the boundary value problem {Mathematical expression} and v any approximation of it (D is here the vector of partial derivatives with respect to the components of x). It is shown that the new error bounds are better than the classical one, which is proportional to {norm of matrix}Av-f{norm of matrix}, in many cases. This happens, e. g., if q has some zero point in G, as in the case of a Poisson equation. © 1989 Springer-Verlag. (EN)

journalArticle

Elliptic boundary value problems (EN)
Error bounds (EN)

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

Computing (EN)

1989


Springer-Verlag (EN)



*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)