On the Frechet differentiability of boundary integral operators in the inverse elastic scattering problem

 
δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*
κοινοποιήστε το τεκμήριο



On the Frechet differentiability of boundary integral operators in the inverse elastic scattering problem (EN)

Charalambopoulos, A (EN)

N/A (EN)

This paper is concerned with the study of the Frechet differentiability properties of the operator connecting the scattered field with scatterer's surface in the framework of the inverse elastic scattering problem. We adopt the integral equation approach, which transfers the solution of the inverse problem to the solution of a boundary integral equation of the second kind. We study the behaviour of the appeared integral operators and prove that they constitute Frechet differentiable operators. As we show, this result leads to the conclusion that the scattered elastic field is Frechet differentiable with respect to the boundary of the scatterer. Finally we present a characterization of the Frechet derivative of the scattered field as the solution of a direct scattering elastic problem with suitable Dirichlet boundary conditions. (EN)

journalArticle

Εθνικό Μετσόβιο Πολυτεχνείο (EL)
National Technical University of Athens (EN)

Inverse Problems (EN)

1995


IOP PUBLISHING LTD (EN)



*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.