Molecular simulation of the homogeneous crystal nucleation of carbon dioxide

see the original item page
in the repository's web site and access all digital files if the item*



Molecular simulation of the homogeneous crystal nucleation of carbon dioxide (EN)

Millot, C (EN)
Leyssale, J-M (EN)
Delhommelle, J (EN)

journalArticle (EN)

2014-03-01T01:22:47Z
2005 (EN)


We report on a molecular simulation study of the homogeneous nucleation of CO2 in the supercooled liquid at low pressure (P=5 MPa) and for degrees of supercooling ranging from 32% to 60%. In all cases, regardless of the degree of supercooling, the structure of the crystal nuclei is that of the Pa3 phase, the thermodynamically stable phase. For the more moderate degree of supercooling of 32%, the nucleation is an activated process and requires a method to sample states of high free energy. In this work, we apply a series of bias potentials, which promote the ordering of the centers of mass of the molecules and allow us to gradually grow crystal nuclei. The reliability of the results so obtained is assessed by studying the evolution of the nuclei in the absence of any bias potential, and by determining their probability of growth. We estimate that the size of the critical nucleus, for which the probability of growth is 0.5, is approximate to 240 molecules. Throughout the nucleation process, the crystal nuclei clearly exhibit a Pa3 structure, in apparent contradiction with Ostwald's rule of stages. The other polymorphs have a much larger free energy. This makes their formation highly unlikely and accounts for the fact that the nucleation of CO2 proceeds directly in the stable Pa3 structure. (c) 2005 American Institute of Physics. (EN)

Physics, Atomic, Molecular & Chemical (EN)

Molecular simulation (EN)
Nucleation (EN)
Computer simulation (EN)
Crystallization (EN)
Crystals (EN)
Carbon dioxide (EN)
Molecular dynamics (EN)
Probability (EN)
Free energy (EN)
Thermodynamics (EN)
Chemical activation (EN)
Polymorphs (EN)
Crystal nuclei (EN)
Supercooling (EN)
Homogeneous nucleation (EN)

Journal of Chemical Physics (EN)

English

AMER INST PHYSICS (EN)




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)