Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling

see the original item page
in the repository's web site and access all digital files if the item*



Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling (EN)

Weiland, J (EN)
Giroud, C (EN)
Tardini, G (EN)
Mantica, P (EN)
Salmi, A (EN)
Strintzi, D (EN)
Tala, T (EN)
Corrigan, G (EN)
Brix, M (EN)
Naulin, V (EN)
Ferreira, JS (EN)
Peeters, AG (EN)
Zastrow, K-D (EN)

journalArticle (EN)

2014-03-01T01:34:17Z
2010 (EN)


Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53 (4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum diffusivity and pinch. Details of the experimental technique, data analysis, and modeling are provided. The momentum diffusivity in the core region (0.2<p<0.8) was found to be close to the ion heat diffusivity (chi(phi)/chi(i)similar to 0.7-1.7) and a significant inward momentum convection term, up to 20 m/s, was found, leading to an effective momentum diffusivity significantly lower than the ion heat diffusivity (chi(eff)(phi)/chi(eff)(i) similar to 0.4). These results have significant implications on the prediction of toroidal rotation velocities in future tokamaks and are qualitatively consistent with recent developments in momentum transport theory. Detailed quantitative comparisons with the theoretical predictions of the linear gyrokinetic code GKW [A. G. Peeters et al., Comput. Phys. Commun. 180, 2650 (2009)] and of the quasilinear fluid Weiland model [J. Weiland, Collective Modes in Inhomogeneous Plasmas (IOP, Bristol, 2000)] are presented for two analyzed discharges. [doi:10.1063/1.3480640] (EN)

Physics, Fluids & Plasmas (EN)

Neutral beams (EN)
Magnetoplasma (EN)
Plasma theory (EN)
pinch effect (EN)
Antiphase (EN)
Gyrokinetic codes (EN)
Toroidal rotation (EN)
Experimental techniques (EN)
Momentum transports (EN)
Particle beam injection (EN)
Neutral beam injection (EN)
Momentum transfer (EN)
Heat diffusivity (EN)
Quasi-linear (EN)
Diffusion (EN)
Particle beams (EN)
Data analysis (EN)
Quantitative comparison (EN)
Joint European Torus (EN)
Core region (EN)
Fusion reactors (EN)
plasma toroidal confinement (EN)
Collective modes (EN)
Momentum (EN)
Tokamak devices (EN)
plasma beam injection heating (EN)
Rotation (EN)
Data reduction (EN)
Periodic perturbation (EN)
First-principles modeling (EN)
plasma transport processes (EN)
plasma kinetic theory (EN)
plasma simulation (EN)
Inhomogeneous plasma (EN)
plasma magnetohydrodynamics (EN)
Time-dependent transport (EN)
Weiland model (EN)
Statistical mechanics (EN)
Momentum diffusivity (EN)
Theoretical prediction (EN)

Physics of Plasmas (EN)

English

AMER INST PHYSICS (EN)




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)