A coupled-mode model for water wave scattering by horizontal, non-homogeneous current in general bottom topography

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



A coupled-mode model for water wave scattering by horizontal, non-homogeneous current in general bottom topography (EN)

Gerostathis, TP (EN)
Athanassoulis, GA (EN)
Belibassakis, KA (EN)

journalArticle (EN)

2014-03-01T01:34:52Z
2011 (EN)


A coupled-mode model is developed for treating the wave-current-seabed interaction problem, with application to wave scattering by non-homogeneous, steady current over general bottom topography. The vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus additional terms accounting for the satisfaction of the free-surface and bottom boundary conditions. Using the above representation, in conjunction with unconstrained variational principle, an improved coupled system of differential equations on the horizontal plane, with respect to the modal amplitudes, is derived. In the case of small-amplitude waves, a linearised version of the above coupled-mode system is obtained, generalizing previous results by Athanassoulis and Belibassakis [J Fluid Mech 1999;389:275-301] for the propagation of small-amplitude water waves over variable bathymetry regions. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to an one-equation model, that is shown to be compatible with mild-slope model concerning wave-current interaction over slowly varying topography, and in the case of no current it exactly reduces to the modified mild-slope equation. The present coupled-mode system is discretized on the horizontal plane by using second-order finite differences and numerically solved by iterations. Results are presented for various representative test cases demonstrating the usefulness of the model, as well as the importance of the first evanescent modes and the additional sloping-bottom mode when the bottom slope is not negligible. The analytical structure of the present model facilitates its extension to fully non-linear waves, and to wave scattering by currents with more general structure. (C) 2011 Elsevier Ltd. All rights reserved. (EN)

Engineering, Ocean (EN)
Oceanography (EN)

Nonlinear waves (EN)
wave scattering (EN)
Test case (EN)
Interaction problems (EN)
Vertical distributions (EN)
bottom topography (EN)
Scattered waves (EN)
Propagating mode (EN)
seafloor (EN)
water wave (EN)
Wave-current-seabed interaction (EN)
Steady current (EN)
Topography (EN)
Water wave scattering (EN)
Horizontal planes (EN)
Bottom topography (EN)
Evanescent mode (EN)
Wave potentials (EN)
Free surfaces (EN)
Electromagnetic wave scattering (EN)
boundary condition (EN)
wave modeling (EN)
Non-homogeneous (EN)
Coupled mode (EN)
Boundary conditions (EN)
Bottom boundary conditions (EN)
Variational principles (EN)
Vertical modes (EN)
wave-current interaction (EN)
Second orders (EN)
Water waves (EN)
Coupled systems (EN)
Wave current interaction (EN)
Modified mild-slope equations (EN)
Wave scattering (EN)
Coupled modes (EN)
Finite difference (EN)
One-equation model (EN)
Analytical structure (EN)
Variable bathymetry (EN)
Variational techniques (EN)

Applied Ocean Research (EN)

Αγγλική γλώσσα

ELSEVIER SCI LTD (EN)




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.