Green's function of radial inhomogeneous spheres excited by internal sources

see the original item page
in the repository's web site and access all digital files if the item*



Green's function of radial inhomogeneous spheres excited by internal sources (EN)

Zouros, GP (EN)
Kokkorakis, GC (EN)

journalArticle (EN)

2014-03-01T01:35:46Z
2011 (EN)


Green's function in the interior of penetrable bodies with inhomogeneous compressibility by sources placed inside them is evaluated through a Schwinger-Lippmann volume integral equation. In the case of a radial inhomogeneous sphere, the radial part of the unknown Green's function can be expanded in a double Dini's series, which allows analytical evaluation of the involved cumbersome integrals. The simple case treated here can be extended to more difficult situations involving inhomogeneous density as well as to the corresponding electromagnetic or elastic problem. Finally, numerical results are given for various inhomogeneous compressibility distributions. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3514519] (EN)

Acoustics (EN)

Internal source (EN)
particle size (EN)
Compressibility (EN)
electromagnetic field (EN)
elasticity (EN)
Elasticity (EN)
statistical model (EN)
Acoustics (EN)
Spheres (EN)
theoretical model (EN)
Electromagnetic Phenomena (EN)
Integral equations (EN)
Computer Simulation (EN)
acoustics (EN)
computer simulation (EN)
Models, Theoretical (EN)
Linear Models (EN)
pressure (EN)
Elastic problems (EN)
Numerical results (EN)
Pressure (EN)
article (EN)
Particle Size (EN)
mathematical computing (EN)
Numerical Analysis, Computer-Assisted (EN)
Volume integral equation (EN)
Differential equations (EN)
Inhomogeneous density (EN)
Analytical evaluation (EN)

Journal of the Acoustical Society of America (EN)

English

ACOUSTICAL SOC AMER AMER INST PHYSICS (EN)




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)