A CONTRIBUTION TO THE STUDY OF W-CONGRUENCES IN THE PROJECTIVE DIFFERENTIAL GEOMETRY

This item is provided by the institution :
National Documentation Centre (EKT)   

Repository :
National Archive of PhD Theses  | ΕΚΤ NA.Ph.D.   

see the original item page
in the repository's web site and access all digital files if the item*



ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΩΝ W-ΣΜΗΝΩΝ ΣΤΑ ΠΛΑΙΣΙΑ ΤΗΣ ΠΡΟΒΟΛΙΚΗΣ ΔΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ
A CONTRIBUTION TO THE STUDY OF W-CONGRUENCES IN THE PROJECTIVE DIFFERENTIAL GEOMETRY

Σταματάκης, Στυλιανός
Stamatakis, Stylianos

PhD Thesis

1988


ΣΤΗ ΔΙΑΤΡΙΒΗ ΑΥΤΗ ΜΕΛΕΤΟΥΜΕ ΣΥΜΠΛΕΓΜΑΤΑ ΚΑΙ ΣΜΗΝΗ ΕΥΘΕΙΩΝ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΠΡΟΒΟΛΙΚΟΥ ΧΩΡΟΥ Ρ3. ΣΤΟ ΚΕΦΑΛΑΙΟ Ι ΠΑΡΑΘΕΤΟΥΜΕ ΓΝΩΣΤΑ, ΩΣ ΕΠΙ ΤΟ ΠΛΕΙΣΤΟΝ, ΣΥΜΠΕΡΑΣΜΑΤΑ. ΤΟ ΚΕΦΑΛΑΙΟ ΙΙ ΑΝΑΦΕΡΕΤΑΙ ΣΤΟΝ ΕΓΓΥΤΑΤΟ ΧΩΡΟ ΤΑΞΗΣ Μ ΣΕ ΜΙΑ ΕΥΘΕΙΑ ΕΝΟΣ ΣΜΗΝΟΥΣ. ΣΤΟ ΚΕΦΑΛΑΙΟ ΙΙΙ ΑΠΟΔΕΙΚΝΥΟΥΜΕ, ΟΤΙ ΣΤΟΝ Ρ3 ΥΠΑΡΧΕΙ ΜΟΝΟΝ ΕΝΑ ΕΚΦΥΛΙΣΜΕΝΟ 'Η ΠΑΡΑΒΟΛΙΚΟ 'Η ΥΠΕΡΒΟΛΙΚΟ 'Η ΕΛΛΕΙΠΤΙΚΟ ΓΡΑΜΜΙΚΟ ΣΜΗΝΟΣ ΚΑΙ ΒΡΙΣΚΟΥΜΕ ΑΠΟ ΜΙΑ ΠΡΟΒΟΛΙΚΗ ΚΑΝΟΝΙΚΗ ΜΟΡΦΗ ΓΙΑ ΚΑΘΕ ΚΛΑΣΗ ΙΣΟΔΥΝΑΜΩΝ ΓΡΑΜΜΙΚΩΝ ΣΜΗΝΩΝ. ΕΙΝΑΙ ΓΝΩΣΤΟ, ΟΤΙ ΚΑΘΕ W- ΣΜΗΝΟΣ ΕΧΕΙ ΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΙΔΙΟΤΗΤΑ, Ο ΕΓΓΥΤΑΤΟΣ ΧΩΡΟΣ ΤΑΞΗΣ ΔΥΟ J(2) ΑΥΤΟΥ ΝΑ ΕΧΕΙ ΔΙΑΣΤΑΣΗ D(2) < 4. ΣΤΟ ΚΕΦΑΛΑΙΟ IV ΕΠΕΚΤΕΙΝΟΥΜΕ ΤΗΝΕΝΝΟΙΑ ΤΩΝ W-ΣΜΗΝΩΝ ΚΑΙ ΣΕ ΜΗ ΥΠΕΡΒΟΛΙΚΑ ΣΜΗΝΗ, ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΤΗΝ ΠΑΡΑΠΑΝΩ ΙΔΙΟΤΗΤΑ, ΚΑΙ ΒΡΙΣΚΟΥΜΕ ΟΛΑ ΤΑ W- ΣΜΗΝΗ ΜΕ ΜΙΑ ΕΚΦΥΛΙΣΜΕΝΗ ΕΣΤΙΑΚΗ ΕΠΙΦΑΝΕΙΑ.
THIS DISSERTATION IS DEVOTED TO THE STUDY OF COMPLEXES AND CONGRUENCES OF STRAIGHT LINES IN THE REAL PROJECTIVE SPACE P3. IN CHAPTER I WE PRESENT, FOR THE MOST PART, KNOWN RESULTS. CHAPTER II IS CONCERNED WITH THE M-TH OSCULATING SPACE IN A STRAIGHT LINE OF CONGRUENCE. IN CHAPTER III WE PROVE THAT IN P3 THERE IS ONLY ONE DEGENERATED OR PARABOLIC OR HYPERBOLIC OR ELLIPTIC LINEAR CONGRUENCE ANDWE FIND A PROJECTIVE NORMAL FORM FOR EACH CLASS OF EQUIVALENT LINEAR CONGRUENCES. IT IS WELL-KNOWN THAT A W- CONGRUENCE HAS THE CHARACTERISTIC PROPERTY, THATITS SECOND OSCULATING SPACE J(2) HAS A DIMENSION D(2) < 4. IN CHAPTER IV WE EXTEND THE CONCEPT OF W-CONGRUENCE TO THE CASE OF NOT HYPERBOLIC CONGRUENCES BY USING THE PRECEDING PROPERTY AND WE FIND ALL W- CONGRUENCES WITH A DEGENERATED FOCAL SURFACE.

Μαθηματικά
Φυσικές Επιστήμες

W-CONGRUENCES
ΣΜΗΝΗ ΕΥΘΕΙΩΝ
Differential geometry
ΣΥΜΠΛΕΓΜΑΤΑ ΕΥΘΕΙΩΝ
Μαθηματικά
Mathematics
Complexes
CONGRUENCES
Φυσικές Επιστήμες
ΕΥΘΕΙΑΚΗ ΓΕΩΜΕΤΡΙΑ
Διαφορική γεωμετρία
LINEAR CONGRUENCES
ΓΡΑΜΜΙΚΑ ΣΜΗΝΗ
W-ΣΜΗΝΗ
Natural Sciences
LINE GEOMETRY

Greek

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
Aristotle University Of Thessaloniki (AUTH)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)