Δημιουργία γνώσης βάσει δεδομένων μεγάλης κλίμακας για την γνωσιακή διαχείριση τηλεπικοινωνιακών υποδομών

This item is provided by the institution :
National Documentation Centre (EKT)   

Repository :
National Archive of PhD Theses  | ΕΚΤ NA.Ph.D.   

see the original item page
in the repository's web site and access all digital files if the item*



Knowledge generation from telecommunications big data for enabling cognitive infrastructure management
Δημιουργία γνώσης βάσει δεδομένων μεγάλης κλίμακας για την γνωσιακή διαχείριση τηλεπικοινωνιακών υποδομών

Bantouna, Aimilia
Μπαντούνα, Αιμιλία

PhD Thesis

2015


The continuously growing use of Internet and the optimization of the services, in terms of offering more capabilities to the users, result in the increased need for spectrum/bandwidth, a rather limited resource, and processing capabilities in core and access networks. To this end, Cognitive Radio Systems (CRSs) have been proposed for enhancing the resource allocation and utilization, and thus bridge this gap while preserving, if not enhancing, the Quality of Services (QoS) and the Quality of Experience (QoE). Moreover, the availability of large amounts of unstructured data, which come from various sources, is seen as highly promising for deriving high level information and new insights for the business world while easier access to them through the Web facilitates the research towards this direction. However, the velocity of them being changed requires exceptional technology to efficiently process large quantities of data within tolerable timeframes. Data characterized by high volume, variety and velocity are commonly known as Big Data. These data need to be efficiently managed, handled and exploited by the Network Operators (NOs) and/or Service Providers (SPs) but human resources are not sufficient. Knowledge building mechanisms are often proposed for addressing both of the above challenges. In particular, cognitive network management can offer solutions to the challenges posed by future networks but this requires the incorporation of knowledge that is dynamically built from its own mechanisms. Dynamically built knowledge exploits context information and allows quicker and more complex data analysis so as to better comply with the volume, the velocity and the variety of the produced Big Data. In order to build knowledge that enhances the decisions of the network, the network monitors its current state and senses information with respect to the context it functions, it collects information regarding the results of its decisions – whether the state in which it evolved allows it to have better or worse performance – and is dynamically trained to select the state with the highest performance when in similar context. During the decision making process, rules and policies of the NO and/or the SP are combined with the knowledge built from the past experience of the network so as to be respected.To this end, this dissertation studies, designs, proposes and evaluates knowledge building mechanisms that can exploit (Big) data and enhance the decision making processes of a CRS.
Η συνεχώς αυξανόμενη χρήση του Διαδικτύου και η βελτιστοποίηση των υπηρεσιών, υπό την έννοια της προσφοράς περισσότερων δυνατοτήτων στους χρήστες, έχει ώς αποτέλεσμα την αυξανόμενη ανάγκη ραδιοσυχνότητων, μίας περιορισμένης φυσικής πηγής, και των επεξεργαστικών δυνατοτήτων των δικτύων. Τα συστήματα γνωσιακής διαχείρισης έχουν την ικανότητα να βελτιώνουν την κατανομή και την χρησιμοποίηση των πόρων ενώ παράλληλα διατηρούν, αν όχι βελτιώνουν, την ποιότητα των υπηρεσιών (QoS) και την ποιότικα της εμπειρίας των χρηστών. Παράλληλα, η μεγάλη διαθεσιμότητα της αδόμητης πληροφορίας από διαφορετικές πηγές παρέχει την δυνατότητα της δημιουργίας γνωσης αλλά η μεγάλη ταχύτητα με την οποία η πληροφορία αυτή αλλάζει απαιτεί τέτοια τεχνολογία που να μπορεί να επεξεργάζεται μεγάλο όγκο δεδομένων σε μικρά χρονικά διαστήματα. Τα δεδομένα που χαρακτηρίζοντια από μεγάλο όγκο, ποικιλομορφία και ταχύτητα είναι γνωστά ως Big Data. Οι μηχανισμοί δημιουργίας γνώσης αναφέρονται συχνά ώς η διέξοδος και στις 2 παραπάνω προκλήσεις των μελλοντικών δικτύων. Συγκεκριμένα, οι μηχανισμοί δημιουργίας γνώσης παράγουν δυναμικά την γνώση που περιλαμβάνει την πρότερη εμπειρία του δικτύου και μπορεί να καθοδηγήσει τις αποφάσεις του δικτύου. Συγκεκριμένα, παρακολουθούν την κατάσταση του δικτύου, συλλέγουν πληροφορίες από το περιβαλλον τους και σχετικά με την απόδοση των αποφάσεών τους και εκπαιδεύονται δυναμικά ώστε να επιλέγουν την καταλληλότερη των αποφάσεων δεδομένης της κατάστασης του δικτύου.Κατά την διαδικασία λήψης αποφάσεων για το δίκτυο, οι κανόνες και η πολιτική διαχείρισης του δικτύου συνυπολογίζονται. Προς αυτήν την κατεύθυνση, η εν λόγω διατριβή μελετά, σχεδιάζει, προτείνει και αξιολογεί μηχανισμούς δημιουργίας γνώσης που μπορούν να αξιοποιήσουν δεδομένα μεγάλης κλίμακας και να βελτιώσει τις διαδικασίες λήψης αποφάσεων των συστημάτων γνωσιακής διαχείρισης.

Φυσικές Επιστήμες ➨ Επιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική
Επιστήμες Μηχανικού και Τεχνολογία ➨ Επιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ

Συστήματα γνωσιακής διαχείρισης
Μη-καθοδηγούμενες τεχνικές μάθησης
Επιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ
CRS
Electrical Engineering, Electronic Engineering, Information Engineering
Computer and Information Sciences
Φυσικές Επιστήμες
Unsupervised learning
Επιστήμες Μηχανικού και Τεχνολογία
Knowledge building
Engineering and Technology
Δημιουργία γνώσης
Μηχανική μάθηση
Machine learning
Big data
Επιστήμη Ηλεκτρονικών Υπολογιστών και Πληροφορική
Natural Sciences
Δεδομένα μεγάλης κλίμακας

English

University of Piraeus (UNIPI)
Πανεπιστήμιο Πειραιώς

Πανεπιστήμιο Πειραιώς. Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτων




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)