A simple stock screener framework for portfolio optimization

This item is provided by the institution :
University of Macedonia   

Repository :
Psepheda - Digital Library and Institutional Repository   

see the original item page
in the repository's web site and access all digital files if the item*



A simple stock screener framework for portfolio optimization (EN)

Μπανάτας, Ιωάννης (EL)

Χρήστου-Βαρσακέλης, Δημήτριος (EL)

Electronic Thesis or Dissertation (EN)
Text (EN)

2022-09-05T09:51:40Z
2022 (EL)


Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2022. (EL)
This thesis proposes a stock portfolio optimization method that is simple, scalable, and efficient compared to other proposed strategies from the literature, while significantly outperforming the market. We discuss the survivor bias effect that affects datasets composed of historical information on stock prices and how that can distort results and hinder the proper evaluation of any portfolio optimization strategy. Our approach uses a screening tool to select stocks out of a large pool. The screener’s parameters are optimized on a training dataset. We then construct a portfolio which weights stocks so as to minimize the correlation of the selected stocks. We also incorporate a "trigger" mechanism for identifying downturns in stock prices in a way that informs our trading decisions. Using multiple testing periods of 14, 17 and 20 years, our strategy surpassed the S&P500 index and outperformed many similar studies. Overall, this work shows that a simpler, more fundamental approach can oftentimes perform better than complex models. (EN)
Submitted by ΙΩΑΝΝΗΣ ΜΠΑΝΑΤΑΣ ([email protected]) on 2022-09-04T10:03:55Z No. of bitstreams: 2 license_rdf: 1031 bytes, checksum: 934f4ca17e109e0a05eaeaba504d7ce4 (MD5) BanatasIoannisMsc2022.pdf: 1455482 bytes, checksum: 856a1efdbfe64cfe5a4381215f55f21c (MD5) (EN)
Approved for entry into archive by Κυριακή Μπαλτά ([email protected]) on 2022-09-05T09:51:39Z (GMT) No. of bitstreams: 2 license_rdf: 1031 bytes, checksum: 934f4ca17e109e0a05eaeaba504d7ce4 (MD5) BanatasIoannisMsc2022.pdf: 1455482 bytes, checksum: 856a1efdbfe64cfe5a4381215f55f21c (MD5) (EN)
Made available in DSpace on 2022-09-05T09:51:40Z (GMT). No. of bitstreams: 2 license_rdf: 1031 bytes, checksum: 934f4ca17e109e0a05eaeaba504d7ce4 (MD5) BanatasIoannisMsc2022.pdf: 1455482 bytes, checksum: 856a1efdbfe64cfe5a4381215f55f21c (MD5) Previous issue date: 2022-09-04 (EN)


Stock market simulation (EN)
Optimizaton (EN)
Survivor bias (EN)
Machine learning (EN)
Screener (EN)
Stock portfolio (EN)
Stock market (EN)
markowitz (EN)

Πανεπιστήμιο Μακεδονίας (EL)

Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (EL)

Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές (EL)
http://creativecommons.org/licenses/by-nc-sa/4.0/




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)