Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches

This item is provided by the institution :
University of Macedonia   

Repository :
Psepheda - Digital Library and Institutional Repository   

see the original item page
in the repository's web site and access all digital files if the item*



Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches (EN)

Πασβάντης, Κωνσταντίνος (EL)

Πρωτοπαπαδάκης, Ευτύχιος (EL)

Electronic Thesis or Dissertation (EN)
Text (EN)

2024-07-04T09:42:54Z
2024


Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024. (EL)
Approved for entry into archive by Κυριακή Μπαλτά ([email protected]) on 2024-07-04T09:42:54Z (GMT) No. of bitstreams: 2 license_rdf: 1025 bytes, checksum: 84a900c9dd4b2a10095a94649e1ce116 (MD5) Enhancing Deep Learning Model Explainability in Brain Tumor Datasets using Post-Heuristic Approaches.pdf: 5070589 bytes, checksum: 5e52cedd80cf0b21dcd26c991e53a005 (MD5) (EN)
Made available in DSpace on 2024-07-04T09:42:54Z (GMT). No. of bitstreams: 2 license_rdf: 1025 bytes, checksum: 84a900c9dd4b2a10095a94649e1ce116 (MD5) Enhancing Deep Learning Model Explainability in Brain Tumor Datasets using Post-Heuristic Approaches.pdf: 5070589 bytes, checksum: 5e52cedd80cf0b21dcd26c991e53a005 (MD5) Previous issue date: 2024-07-04 (EN)
The application of deep learning models in medical diagnosis has showcased considerable efficacy in recent years. Nevertheless, a notable limitation involves the inherent lack of explainability during decision-making processes. This study addresses such a constraint, by enhancing the interpretability robustness. The primary focus is directed towards refining the explanations generated by the LIME Library and LIME image explainer. This is achieved throuhg post-processing mechanisms, based on scenario-specific rules. Multiple experiments have been conducted using publicly accessible datasets related to brain tumor detection. Our proposed post-heuristic approach demonstrates significant advancements, yielding more robust and concrete results, in the context of medical diagnosis. (EN)
Submitted by ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΑΣΒΑΝΤΗΣ ([email protected]) on 2024-07-04T06:55:07Z No. of bitstreams: 2 license_rdf: 1025 bytes, checksum: 84a900c9dd4b2a10095a94649e1ce116 (MD5) Enhancing Deep Learning Model Explainability in Brain Tumor Datasets using Post-Heuristic Approaches.pdf: 5070589 bytes, checksum: 5e52cedd80cf0b21dcd26c991e53a005 (MD5) (EN)


Health Informatics (EN)
Computer Vision (EN)

Πανεπιστήμιο Μακεδονίας (EL)

Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων (EL)

Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 Διεθνές (EL)
http://creativecommons.org/licenses/by-sa/4.0/




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)