Smart Agriculture Technologies in Plant Disease Monitoring, Detection and Diagnosis: Towards Agriculture 5.0

δείτε την πρωτότυπη σελίδα τεκμηρίου
στον ιστότοπο του αποθετηρίου του φορέα για περισσότερες πληροφορίες και για να δείτε όλα τα ψηφιακά αρχεία του τεκμηρίου*



Smart Agriculture Technologies in Plant Disease Monitoring, Detection and Diagnosis: Towards Agriculture 5.0 (EN)

Athanasiou, Georgia (EN)

Triantakonstantis, Dimitrios

masterThesis

2025-06-05T08:49:08Z
2025-04-01


The agricultural sector faces increasing challenges in ensuring sustainable and efficient food production amid population growth, climate change, and evolving disease threats. Among the most pressing issues in modern farming is plant disease management, which directly impacts crop yield, food security, and economic stability. Traditional disease detection and management approaches, such as visual inspection and broad-spectrum chemical applications, often fail to provide timely, cost-effective, and environmentally sustainable solutions. In response, the integration of smart agricultural technologies has emerged as a transformative force in plant disease management, steering global agriculture towards the paradigm of Agriculture 5.0. This study explores the role of cutting-edge technologies, including the Internet of Things (IoT), remote sensing, and AI machine learning (ML) and deep learning (DL), in early plant disease detection and monitoring. By leveraging advanced sensor networks, data analytics, and artificial intelligence, smart agriculture enables real-time disease monitoring, improving diagnostic accuracy, reducing reliance on chemical treatments. The research critically examines the strengths and limitations of these technologies and assesses the transition from Agriculture 4.0 to Agriculture 5.0, highlighting the need for a human-centric, sustainable, and technology-enhanced agricultural model. Through an extensive review of current methodologies and case studies, this dissertation presents a roadmap for the future of plant disease management processes identifying key technological enablers, challenges, and adoption barriers. Findings indicate that while AI-driven plant disease detection systems can offer unprecedented accuracy and efficiency, widespread adoption is hindered by infrastructural deficiencies, standardization issues, and socioeconomic factors. Bridging these gaps will require a holistic approach that integrates technological advancements with policy support, farmer education, and interdisciplinary collaboration. (EN)

Αγγλική γλώσσα

MSc in Sustainable Agriculture and Business
School of Humanities, Social Sciences and Economics




*Η εύρυθμη και αδιάλειπτη λειτουργία των διαδικτυακών διευθύνσεων των συλλογών (ψηφιακό αρχείο, καρτέλα τεκμηρίου στο αποθετήριο) είναι αποκλειστική ευθύνη των αντίστοιχων Φορέων περιεχομένου.