Event recognition under uncertainty and incomplete data

This item is provided by the institution :
University of Peiraeus   

Repository :
Dione   

see the original item page
in the repository's web site and access all digital files if the item*



Event recognition under uncertainty and incomplete data

Σκαρλατίδης, Αναστάσιος

Βούρος, Γεώργιος
Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών. Τμήμα Ψηφιακών Συστημάτων

Doctoral Thesis

2014-10
2015-07-20T07:01:07Z


Τα συμβολικά συστήματα αναγνώρισης γεγονότων έχουν χρησιμοποιηθεί επιτυχώς σε μία ποικιλία εφαρμογών. Τα συστήματα αυτά εξάγουν χρήσιμη πληροφορία υπό την μορφή γεγονότων, που δίνουν τη δυνατότητα σε ειδικούς, ή σε άλλα συστήματα, να παρακολουθούν και να ανταποκρίνονται στην παρουσία γεγονότων σημαντικού ενδιαφέροντος. Ωστόσο είναι πολύ συχνό σε μία τυπική εφαρμογή αναγνώρισης γεγονότων να παρουσιάζεται σημαντική αβεβαιότητα. Σε αυτή την διατριβή, εστιάζουμε στα προβλήματα που προκύπτουν από την παρουσία της αβεβαιότητας στην αναγνώριση γεγονότων. Επεκτείνουμε ένα φορμαλισμό λογικής άλγεβρας γεγονότων με πιθανοτικό συμπερασμό. Η χρονικές σχέσεις του λογικού φορμαλισμού εισάγουν ένα πλήθος δυσκολιών στα πιθανοτικά μοντέλα και παρουσιάζουμε τον τρόπο και τις προϋποθέσεις με τις οποίες μπορούμε να ξεπεράσουμε αυτές τις δυσκολίες. Παράλληλα, μελετάμε τον τρόπο με τον οποίο η πιθανοτική μοντελοποίηση επηρεάζει την συμπεριφορά του φορμαλισμού. Επιπλέον, παρουσιάζουμε τις δυνατότητες και τα προτερήματα των πιθανοτικών μεθόδων που αναπτύξαμε με εκτενή πειραματισμό και ανάλυση στον τομέα της αναγνώρισης συμπεριφορών από βίντεο.
Symbolic event recognition systems have been successfully applied to a variety of application domains, extracting useful information in the form of events, allowing experts or other systems to monitor and respond when significant events are recognised. In a typical event recognition application, however, these systems often have to deal with a significant amount of uncertainty. In this thesis, we address the issue of uncertainty in logic-based event recognition by extending the Event Calculus with probabilistic reasoning. The temporal semantics of the Event Calculus introduce a number of challenges for the proposed model. We show how and under what assumptions we can overcome these problems. Additionally, we study how probabilistic modelling changes the behaviour of the formalism, affecting its key property, the inertia of fluents. Furthermore, we demonstrate the advantages of the probabilistic Event Calculus through examples and experiments in the domain of activity recognition, using a publicly available dataset for video surveillance.

Logic, Symbolic and Mathematical
Λογική, Συμβολική και μαθηματική

English

Πανεπιστήμιο Πειραιώς

http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Διεθνές




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)