Porous medium /slow diffusion equation with nonlinear source and 3RD type boundary conditions

This item is provided by the institution :
University of Crete   

Repository :
E-Locus Institutional Repository   

see the original item page
in the repository's web site and access all digital files if the item*



Εξίσωση πορόδους μέσου με αργή διάχυση με μη γραμμική πηγή και 3RD τύπου συνοριακές συνθήκες
Porous medium /slow diffusion equation with nonlinear source and 3RD type boundary conditions

Γραμματικός Ηλίας

Τερτίκας, Αχιλλέας
Φίλιππας, Στάθης
Τερσενώφ, Άλκης

text
Τύπος Εργασίας--Μεταπτυχιακές εργασίες ειδίκευσης

2023-03-17


In the present paper, we obtain a new a priori estimate of the solution of the initial-boundary value Problem for the Porous medium equation with non-linear source. Also, we present the conditions guaranteeing the existence of a global classical solution of this Problem as well as the cases for which the solution may blow up (the last is discussed in [1,2]). We have to establish an a priori estimate of the already studied heat type problem with Dirichlet conditions instead (see [3]). The main tool which is going to be utilized for finding an a priori estimate and constructing an upper bound for the solution, is the maximum principle (EN)


Εξίσωση αργής διάχυσης
A priori εκτιμήσεις

English





*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)