RF signals over field emission currents: a theoretical study for MEMS capacitive switches

This item is provided by the institution :
University of Crete   

Repository :
E-Locus Institutional Repository   

see the original item page
in the repository's web site and access all digital files if the item*



RF signals over field emission currents: a theoretical study for MEMS capacitive switches

Michalas, Loukas

Konstantinidis, George
Papaioannou, George
Elsevier: Microelectronics Reliability, Vol.138, (2022), 114678

text
Τύπος Εργασίας--Δημοσιεύσεις

2022-09-25


The existence of (sub)micrometer scale gaps in Micro-Electro-Mechanical-Systems (MEMS) gives rise to field emission currents and this is already considered a reliability issue resulting in device degradation and/or failure. This work aspires to offer another perspective with respect to the field emission related phenomena in Radio Frequency (RF)-MEMS, focusing the attention prior to the failure and emphasizing on a reliability aspect affecting the signal integrity. This stems from the non-linear nature of the field emission currents and instigated during their simultaneous presence with RF signals, particularly of high power. Theoretical calculations reveal that this combination results in the generation of new harmonics in addition to the stimulated one. This effect dependents on the distortion induced in the field emission current by the simultaneous excitation by both the DC and the RF biases. Apart from the applied biases, additional parameters contributing indirectly, such as the operation frequency and the device characteristics are having a major role. These outcomes should therefore be considered when designing (high-power) RF MEMS applications. (EL)
The existence of (sub)micrometer scale gaps in Micro-Electro-Mechanical-Systems (MEMS) gives rise to field emission currents and this is already considered a reliability issue resulting in device degradation and/or failure. This work aspires to offer another perspective with respect to the field emission related phenomena in Radio Frequency (RF)-MEMS, focusing the attention prior to the failure and emphasizing on a reliability aspect affecting the signal integrity. This stems from the non-linear nature of the field emission currents and instigated during their simultaneous presence with RF signals, particularly of high power. Theoretical calculations reveal that this combination results in the generation of new harmonics in addition to the stimulated one. This effect dependents on the distortion induced in the field emission current by the simultaneous excitation by both the DC and the RF biases. Apart from the applied biases, additional parameters contributing indirectly, such as the operation frequency and the device characteristics are having a major role. These outcomes should therefore be considered when designing (high-power) RF MEMS applications. (EN)


Harmonics
RF MEMS
RF power
Field emission

English


by




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)