Περιοδικές λύσεις για το σύστημα Van der Pol

This item is provided by the institution :
University of the Aegena   

Repository :
Institutional Repository Hellanicus   

see the original item page
in the repository's web site and access all digital files if the item*



Περιοδικές λύσεις για το σύστημα Van der Pol

Παπαβαρνάβα, Όλγα

Καραχάλιος, Νίκος

masterThesis

2007
2015-11-18T10:20:15Z


Στην εργασία αυτή ασχοληθήκαμε με την ύπαρξη περιοδικών λύσεων για συστήματα διαφορικών εξισώσεων.Στο πρώτο κεφάλαιο θα αναφέρουμε κάποιες βασικές έννοιες , ορισμούς και αποτελέσματα στα οποία βασίζεται η μεθοδολογία που θα χρησιμοποιήσουμε. Η μεθοδολογία αυτή, η οποία παρουσιάζεται στο δεύτερο κεφάλαιο βασίζεται στην εφαρμογή του θεωρήματος Poincaré-Bendixson, με χρήση του οποίου είναι δυνατόν να αποδειχθεί η ύπαρξη οριακών κύκλων για μια μεγάλη και σημαντική κλάση εξισώσεων. Στο τρίτο κεφάλαιο, παρουσιάζουμε μια όμορφη ωστόσο απλή προσεγγιστική μέθοδο για τον προσδιορισμό του πλάτους της ταλάντωσης που περιγράφεται από τον οριακό κύκλο. Η μέθοδος αυτή μας παρέχει επιπλέον ένα κριτήριο για την ευστάθεια του οριακού κύκλου. Στο τέταρτο και τελευταίο κεφάλαιο έχουμε μια σύντομη παρουσίαση αποτελεσμάτων από αριθμητικές εξομοιώσεις για την συμπεριφορά του οριακού κύκλου της εξίσωσης van der Pol. Με χρήση του MATHEMATICA, κατασκευάσαμε τον οριακό κύκλο της εξίσωσης αυτής για διάφορες τιμές της παραμέτρου ε, όπως και τις αντίστοιχες λύσεις. Πραγματοποιήσαμε αντίστοιχες δοκιμές για το σύστημα Rayleigh. Πιστεύουμε ότι παρουσιάζουν ενδιαφέρον τα συμπεράσματα που προκύπτουν από τις εξομοιώσεις αυτές σε σχέση με την αποτελεσματικότητα της μεθόδου προσέγγισης του πλάτους του οριακού κύκλου και με τα οποία ολοκληρώνουμε την παρουσίαση αυτής της εργασίας.

Differential equations

Van der Pol
Οριακός κύκλος
Poincare Bendixson
Περιοδικές λύσεις

Πανεπιστήμιο Αιγαίου. Σχολή Θετικών Επιστημών. Τμήμα Μαθηματικών. Μαθηματική Μοντελοποίηση στις Φυσικές Επιστήμες και τις Σύγχρονες Τεχνολογίες.




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)