Αναλυτική απόδειξη του θεωρήματος των πρώτων αριθμών

This item is provided by the institution :
University of the Aegena   

Repository :
Institutional Repository Hellanicus   

see the original item page
in the repository's web site and access all digital files if the item*



Αναλυτική απόδειξη του θεωρήματος των πρώτων αριθμών

Βαρδάκης, Γεώργιος

Φελουζής, Ευάγγελος
Τσολομύτης, Αντώνης
Παπασαλούρος, Ανδρέας

masterThesis

2018-01-26
2019-07-23T06:58:18Z

Στη θεωρία αριθμών , το θεώρημα πρώτων αριθμών περιγράφει την ασυμπτωτική κατανομή των πρώτων αριθμών μεταξύ των θετικών ακεραίων. Το θεώρημα αποδείχθηκε ανεξάρτητα από τον Jacques Hadamard και τον Charles Jean de la Vallée-Poussin το 1896 χρησιμοποιώντας ιδέες που εισήγαγε ο Μπέρναρντ Ρίμαν (ειδικότερα, η συνάρτηση ζήτα του Riemann). Η πρώτη τέτοια κατανομή που βρέθηκε είναι η π(N) ~ N / log(N), όπου π(N) είναι η συνάρτηση καταμέτρησης των πρώτων αριθμών και log(N) είναι ο φυσικός λογάριθμος του N. Αυτό σημαίνει ότι για αρκετά μεγάλα Ν, η πιθανότητα ένας τυχαίος ακέραιος που δεν είναι μεγαλύτερος από το Ν είναι πρώτος αν είναι πολύ κοντά στο 1 / log(N). Κατά συνέπεια, ένας τυχαίος ακέραιος με το πολύ 2n ψηφία ( για αρκετά μεγάλο n) έχει περίπου τις μισές πιθανότητες να είναι πρώτος από ένα τυχαίο ακέραιο με το πολύ n ψηφία. Για παράδειγμα, μεταξύ των θετικών ακεραίων με το πολύ 1000 ψηφία, περίπου ένα στους 2300 είναι πρώτος (log(101000) ≈ 2302.6), λαμβάνοντας υπόψη ότι μεταξύ των θετικών ακέραιων με το πολύ 2000 ψηφία περίπου ένα στους 4600 είναι πρώτος (log(102000) ≈ 4605.2). Με άλλα λόγια, η μέση διαφορά ανάμεσα στους διαδοχικούς πρώτους αριθμούς μεταξύ των πρώτων N ακεραίων είναι περίπου log(N).

Number theory (URL: http://id.loc.gov/authorities/subjects/sh85093222)
Functions, Meromorphic (URL: http://id.loc.gov/authorities/subjects/sh85052343)
Numbers, Prime (URL: http://id.loc.gov/authorities/subjects/sh85093218)
Holomorphic functions (URL: http://id.loc.gov/authorities/subjects/sh85061536)

μιγαδική
αναλυτική συνέχιση
πρώτοι αριθμοί
Riemman
holomorphic
meromorphic

aegean
Σπουδές στα Μαθηματικά
Πανεπιστήμιο Αιγαίου - Σχολή Θετικών Επιστημών - Τμήμα Μαθηματικών

CC0 1.0 Παγκόσμια
http://creativecommons.org/publicdomain/zero/1.0/




*Institutions are responsible for keeping their URLs functional (digital file, item page in repository site)